Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

PDF

University at Albany, State University of New York

Theses/Dissertations

TiO2

Articles 1 - 2 of 2

Full-Text Articles in Nanoscience and Nanotechnology

Nanostructured Tiox As A Catalyst Support Material For Proton Exchange Membrane Fuel Cells, Richard Phillips Jan 2014

Nanostructured Tiox As A Catalyst Support Material For Proton Exchange Membrane Fuel Cells, Richard Phillips

Legacy Theses & Dissertations (2009 - 2024)

Recent interest in the development of new catalyst support materials for proton exchange membrane fuel cells (PEMFCs) has stimulated research into the viability of TiO2-based support structures. Specifically, substoichiometric TiO2 (TiOx) has been reported to exhibit a combination of high conductivity, stability, and corrosion resistance. These properties make TiOx-based support materials a promising prospect when considering the inferior corrosion resistance of traditional carbon-based supports. This document presents an investigation into the formation of conductive and stable TiOx thin films employing atomic layer deposition (ALD) and a post deposition oxygen reducing anneal (PDORA). …


First-Principles Study Of The Electric Field Effect On The Water-Adsorbed Rutile Titanium Dioxide Surface, Abraham L. Hmiel Jan 2014

First-Principles Study Of The Electric Field Effect On The Water-Adsorbed Rutile Titanium Dioxide Surface, Abraham L. Hmiel

Legacy Theses & Dissertations (2009 - 2024)

TiO2 is a semiconducting material that has been used extensively in many industrial applications, and recently has become a candidate for photocatalytic water splitting, fuel cell anode support materials, sensors, and other novel nanodevices. The interface of TiO2 with water, historically well-studied but still poorly understood, presents a ubiquitous environmental challenge towards the ultimate practical usefulness of these technologies. Ground-state density functional theory (DFT) calculations studying the characteristics of molecular adsorption on model surfaces have been studied for decades, showing constant improvement in the description of the energetics and electronic structure at interfaces. These simulations are invaluable in the …