Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Nanoscience and Nanotechnology

Forisome Based Biomimetic Smart Materials, Amy Shen, Benjamin Hamlington, Michael Knoblauch, Winfried Peters, William Pickard Jun 2006

Forisome Based Biomimetic Smart Materials, Amy Shen, Benjamin Hamlington, Michael Knoblauch, Winfried Peters, William Pickard

Winfried S. Peters

With the discovery in plants of the proteinaceous forisome crystalloid (Knoblauch, et al. 2003), a novel, non-living, ATP-independent biological material became available to the designer of smart materials for advanced actuating and sensing. The in vitro studies of Knoblauch, et al. show that forisomes (2-4 micron wide and 10-40 micron long) can be repeatedly stimulated to contract and expand anisotropically by shifting either the ambient pH or the ambient calcium ion concentration. Because of their unique abilities to develop and reverse strains greater than 20% in time periods less than one second, forisomes have the potential to outperform current smart …


Prospective Energy Densities In The Forisome, A New Smart Material, William Pickard, Michael Knoblauch, Winfried Peters, Amy Shen Dec 2005

Prospective Energy Densities In The Forisome, A New Smart Material, William Pickard, Michael Knoblauch, Winfried Peters, Amy Shen

Winfried S. Peters

The forisome is a protein structure of plants which, in low Ca2+ solutions, assumes a crystalline condensed conformation and, at high Ca2+, swells to a dispersed conformation; this transition has been attributed to electrostatic deformation of protein “modules”. Forisomes could become an important smart material if the energy density of transformation approached 1 MJ m−3. Quantitation of the forisome as a charged porous continuum permeated by electrolyte fails by orders of magnitude to achieve this energy density electrostatically. However, condensed → dispersed transitions can be visualized alternatively: (i) an ionic bond near the surface of a forisome crystal dissolves to …