Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Polymer and Organic Materials

Theses/Dissertations

Institution
Keyword
Publication Year
Publication
File Type

Articles 1 - 30 of 80

Full-Text Articles in Nanoscience and Nanotechnology

Interfacial Thermomechanical Behavior Of Hybrid Carbon Fibers, Sriraj Srihari Oct 2023

Interfacial Thermomechanical Behavior Of Hybrid Carbon Fibers, Sriraj Srihari

Doctoral Dissertations and Master's Theses

The carbon fiber/epoxy interface is of great importance in composite design due to its load transfer mechanisms from the weak epoxy to the stronger fiber. Improving the strength of the interface reduces the risk of failure at the interface and improves the load transfer to the fiber. In this study, two types of nano-species ZnO nanowires and nickel-based metal organic frameworks were grown on carbon fibers to improve the interfaces. The interfacial mechanics of the enhanced fibers are evaluated using nanoindentation studies. Composite samples with Aeropoxy matrix and vertically aligned fibers are fabricated for this purpose. A Bruker TI-980 TriboIndenter …


Analytical And Experimental Investigation Of Interphase And Dispersion Effects On The Mechanical Stiffness Of Cellulose Nanocomposites, Will Goldberg May 2023

Analytical And Experimental Investigation Of Interphase And Dispersion Effects On The Mechanical Stiffness Of Cellulose Nanocomposites, Will Goldberg

McKelvey School of Engineering Theses & Dissertations

The effect of dispersion and interphase properties on the elastic behavior of cellulose nanocomposites was investigated using a number of composite models, experimental data and a thorough literature review. Cellulose nanocomposites consisting of soy protein isolate (SPI) and cellulose nanocrystals (CNC) or polydopamine coated cellulose nanocrystals (PD-CNC) were prepared via solution casting method and tested for mechanical stiffness. These outcomes were compared to standard composite models as well as novel methods adapted from the literature that incorporate data regarding dispersion quality and interphase properties. The literature review verified that both dispersion and interphase properties are highly dependent on interfacial chemistry …


Polyethersulfone Thin-Film Nanocomposite Membrane Embedded With Amine-Functionalized Graphene Oxide For Desalination Applications, Ahmed Bahaeldin Jan 2023

Polyethersulfone Thin-Film Nanocomposite Membrane Embedded With Amine-Functionalized Graphene Oxide For Desalination Applications, Ahmed Bahaeldin

Theses and Dissertations

Thin-film nanocomposite (TFN) desalination membranes were prepared based on a polyethersulfone (PES) support, where the polyamide (PA) layer was embedded with amine-functionalized graphene oxide (GO). The effect of adding various concentrations of functionalized and un-functionalized GO on the desalination performance, hydrophilicity, and morphology of the membranes was additionally assessed throughout this work. Scanning electron microscopy (SEM) measurements were used to assess the morphology of the membranes in combination with Brunauer-Emmett-Teller (BET) analysis. Contact angle measurements were used to gauge the hydrophilicity of the synthesized membranes. The membrane with the best desalination performance contained 1x10-3 wt/vol% of functionalized GO in …


Enabling Nanoimprint Lithography Techniques Across Multiple Manufacturing Processes, Vincent Einck Sep 2022

Enabling Nanoimprint Lithography Techniques Across Multiple Manufacturing Processes, Vincent Einck

Doctoral Dissertations

Advanced nanooptics in the areas of flat lenses, diffractive elements, and tunable emissivity require a route to high throughput manufacturing. Nanooptics are often demanding of high refractive index materials, nanometer precision and ease of fabrication. Nanoimprint lithography (NIL) is a low-cost, high throughput manufacturing technique beginning to be realized in commercial industry.1,2 The NIL process is an ideal manufacturing candidate due to its ability to have a fast process time, efficient use of materials, repeatability and high precision while also having wide diversity of potential structures and material choices. Appling NIL techniques to other facets of manufacturing enable the …


Biobased Packaging Materials From Cellulose Nanofibrils Produced From Virgin Wood Pulp Or Recycled Cardboard Pulp, Md Ikramul Hasan Aug 2022

Biobased Packaging Materials From Cellulose Nanofibrils Produced From Virgin Wood Pulp Or Recycled Cardboard Pulp, Md Ikramul Hasan

Electronic Theses and Dissertations

Self-standing cellulose nanofibril (CNF) films are regarded as one of the promising alternatives to current petroleum-based packaging materials. The mechanical and barrier properties of CNF films are not yet up to the mark for certain applications, especially at high relative humidity. Those properties of CNF films can be tuned by the drying methods of films, degree of fibrillation, cross-linking, and controlled shrinkage. A comprehensive understanding of these processes and their influence on the structure and properties of CNF films have been presented in this thesis.

First, we prepared CNF films from CNF suspensions with two different degrees of fibrillation- standard …


Cmos Compatible Carbonization Of Polymer For Elctrochemical Sensors, Mohammad Aminul Haque May 2022

Cmos Compatible Carbonization Of Polymer For Elctrochemical Sensors, Mohammad Aminul Haque

Doctoral Dissertations

Carbon-based electrodes that are integrable with CMOS readout electrodes possess great potential in a wide range of cutting-edge applications. The primary scientific contribution is the development of a processing sequence which can be implemented on CMOS chips to fabricate pyrolyzed carbon microelectrodes from 3D printed polymer microstructures to develop lab-on-CMOS monolithic electrochemical sensor systems. Specifically, optimized processing conditions to convert 3D printed polymer micro- and nano-structures to carbonized electrodes have been explored in order to obtain sensing electrodes for lab-on- CMOS electrochemical systems. Processing conditions have been identified, including a sequel of oxidative and inert atmosphere anneals to form pyrolyzed …


Synthesis Of Monodisperse Nanoscintillators At High Temperatures For Biomedical Relevant Applications, Eric Zhang May 2022

Synthesis Of Monodisperse Nanoscintillators At High Temperatures For Biomedical Relevant Applications, Eric Zhang

All Dissertations

Luminescent sub-100 nm particulates continuously generate immense research interest in the biomedical field for imaging, theranostics, and optogenetics. Conventionally, upconversion nanoparticles or UV activated semiconductors are studied, however these materials are limited by biological barriers such as the skin which reduces the penetration depth of these excitation sources, tissue's auto- fluorescence, and toxicity. One approach to overcome these challenges is to use nanoscintillators (sub-100 nm materials that can generate visible light using high energy excitation sources such as x-rays) which can generate light locally to the human body. Numerous scintillators have been reported since the discovery of x-rays from the …


Molecular Modeling Of High-Performance Polymers, Sagar Umesh Patil Jan 2022

Molecular Modeling Of High-Performance Polymers, Sagar Umesh Patil

Dissertations, Master's Theses and Master's Reports

High-performance polymers are extensively used in the aerospace and aeronautics industries due to their low density, high specific strength, and high specific stiffness. These properties along with better infiltration with reinforcements [carbon nanotubes (CNTs), glass, etc.] capability make them an excellent candidate to fabricate Polymer Matrix Composites (PMCs) tailored for specific applications. The applications range from products used daily to deep space exploration. These materials are subjected to varying temperatures and pressures during fabrication and in service. Therefore, the evolution of their intrinsic properties needs to be studied and their ability to sustain extreme environmental conditions in outer space needs …


Branched Chain Amino Acid Strain State Monitoring With Raman Spectroscopy And Plasmonic Bowtie Nanoantenna Devices For Early Disease Detection, Caroline A. Campbell Jan 2022

Branched Chain Amino Acid Strain State Monitoring With Raman Spectroscopy And Plasmonic Bowtie Nanoantenna Devices For Early Disease Detection, Caroline A. Campbell

Theses and Dissertations

This work centers on the development and the down-selection of nano-manufactured devices to be used in conjunction with Raman spectroscopy for probing a branched chain amino acid. The nano-manufactured devices integrate plasmonic nanoantennas for the purpose of amplifying molecular fingerprints, which are otherwise difficult to detect, through Surface Enhanced Raman Spectroscopy (SERS). Plasmonic nanostructures can be utilized for a variety of biomedical and biochemical applications to detect the characteristic fingerprint provided by Raman Spectroscopy. The nano-manufactured devices create an electric field that amplifies minute perturbations and raises the signal above background noise. This may provide a deeper understanding of signal …


Silver Microparticle And Submicron Wire - Polylactic Acid Composites For Additive Manufacturing, Jenna W. Robichaux Dec 2021

Silver Microparticle And Submicron Wire - Polylactic Acid Composites For Additive Manufacturing, Jenna W. Robichaux

University of New Orleans Theses and Dissertations

This thesis explores the incorporation of silver microparticle and submicron wire additives into thermoplastic filament feedstock for fused filament fabrication (FFF) to create multifunctional three-dimensional (3D) printable composites. The impact of silver microparticle and submicron wire additives on mechanical behavior along with antibacterial effect of the silver microparticle and submicron wire additives on printed objects were assessed.

Composite FFF filaments were fabricated by solution processing, granulation, and extrusion. Differential Scanning Calorimetry (DSC) was conducted to measure the glass transition and melting point temperatures of the composite filaments for 3D printing. The effect of the additive addition on the thermal properties …


Synthesis Of Polyethylene Glycol-Based Hydrogels And Silver/Gold Nanostructures For Biomedical Applications, Isabelle Ishimwe Niyonshuti Dec 2021

Synthesis Of Polyethylene Glycol-Based Hydrogels And Silver/Gold Nanostructures For Biomedical Applications, Isabelle Ishimwe Niyonshuti

Graduate Theses and Dissertations

This work focuses on the synthesis of biocompatible polyethylene glycol (PEG)-based hydrogels, silver nanoparticles (AgNPs), and silver-gold nanocages (Ag-AuNCs) for biomedical applications. The dissertation includes two parts with Part I on the work of PEG-based hydrogel for wound healing applications and Part II on the work of Ag/Au nanostructures for antimicrobial applications. Part I studies PEG-based hydrogel for the delivery of fibroblast growth factors (FGFs) for wound healing applications, aiming to overcome the challenge of designing hydrogels capable of the sustained release of bioactive FGFs. This research develops new biocompatible anionic injectable hydrogel formulations based on Poly (Oligo Ethylene Glycol …


Thermoelectric Transport In Disordered Organic And Inorganic Semiconductors, Meenakshi Upadhyaya Jul 2021

Thermoelectric Transport In Disordered Organic And Inorganic Semiconductors, Meenakshi Upadhyaya

Doctoral Dissertations

The need for alternative energy sources has led to extensive research on optimizing the conversion efficiency of thermoelectric (TE) materials. TE efficiency is governed by figure-of-merit (ZT) and it has been an enormously challenging task to increase ZT > 1 despite decades of research due to the interdependence of material properties. Most doped inorganic semiconductors have a high electrical conductivity and moderate Seebeck coefficient, but ZT is still limited by their high lattice thermal conductivity. One approach to address this problem is to decrease thermal conductivity by means of alloying and nanostructuring, another is to consider materials with an inherently low …


Oxone® Mediated Tempo-Oxidized Cellulose Nanomaterials: Material Characterization, Ultrafiltration Membrane Separations, And Thin Film Composite Gas Transport Analysis, John Phillips Moore May 2021

Oxone® Mediated Tempo-Oxidized Cellulose Nanomaterials: Material Characterization, Ultrafiltration Membrane Separations, And Thin Film Composite Gas Transport Analysis, John Phillips Moore

Graduate Theses and Dissertations

Cellulose nanomaterials (CNMs) are derived from plant matter and are comprised of nanoscopic cellulose crystals and fibers. They have a diverse set of applications, from cosmetics to oil recovery. This study focuses on the properties of Oxone® mediated TEMPO-oxidized cellulose nanomaterials (OTO-CNMs) and their use in controlling the transport properties of polymeric substrates. Synthesis and characterization of cellulosic nanoparticles have resulted in the creation of OTO-CNMs with properties that increase hydrophilicity. With added hydrophilicity, OTO-CNMs possess lower fouling propensity, making them ideal membrane additive for transport limited separations such as hemodialysis.

To utilize the material and unique properties thereof, this …


Multi-Level Analysis Of Atomic Layer Deposition Barrier Coatings On Additively Manufactured Plastics For High Vacuum Applications, Nupur Bihari Jan 2021

Multi-Level Analysis Of Atomic Layer Deposition Barrier Coatings On Additively Manufactured Plastics For High Vacuum Applications, Nupur Bihari

Dissertations, Master's Theses and Master's Reports

While hardware innovations in micro/nano electronics and photonics are heavily patented, the rise of the open-source movement has significantly shifted focus to the importance of obtaining low-cost, functional and easily modifiable research equipment. This thesis provides a foundation of open source development of equipment to aid in the micro/nano electronics and photonics fields.

First, the massive acceptance of the open source Arduino microcontroller has aided in the development of control systems with a wide variety of uses. Here it is used for the development of an open-source dual axis gimbal system. This system is used to characterize optoelectronic properties of …


Development Of Light Actuated Chemical Delivery Platform On A 2-D Array Of Micropore Structure, Hojjat Rostami Azmand, Hojjat Rostami Azmand Jan 2021

Development Of Light Actuated Chemical Delivery Platform On A 2-D Array Of Micropore Structure, Hojjat Rostami Azmand, Hojjat Rostami Azmand

Dissertations and Theses

Localized chemical delivery plays an essential role in the fundamental information transfers within biological systems. Thus, the ability to mimic the natural chemical signal modulation would provide significant contributions to understand the functional signaling pathway of biological cells and develop new prosthetic devices for neurological disorders. In this paper, we demonstrate a light-controlled hydrogel platform that can be used for localized chemical delivery in a high spatial resolution. By utilizing the photothermal behavior of graphene-hydrogel composites confined within micron-sized fluidic channels, patterned light illumination creates the parallel and independent actuation of chemical release in a group of fluidic ports. The …


Nano- And Micro-Structured Temperature-Sensitive Hydrogels For Rapidly Responsive Devices, Qi Lu Jul 2020

Nano- And Micro-Structured Temperature-Sensitive Hydrogels For Rapidly Responsive Devices, Qi Lu

Doctoral Dissertations

This thesis aims to extend the understanding and explore the application of temperature-responsive hydrogel systems by integrating microelectromechanical systems (MEMS). Stimuli-responsive hydrogel systems are immensely investigated and applied in numerous fields, and interfacing with micro- and nano-fabrication techniques will open up more possibilities. In Chapter 2, the first biologically relevant, in vitro cell stretching device based on hydrogel surface instability was developed. This dynamic platform is constructed by embedding micro-heater devices under temperature-responsive surface-attached hydrogels. The fast and regional temperature change actuates the stretching and relaxation of the seeded human artery smooth muscle cell (HASMC) via controllable surface creasing instability. …


Resistive Switching Characteristics Of Nanostructured And Solution-Processed Complex Oxide Assemblies, Zimu Zhou May 2020

Resistive Switching Characteristics Of Nanostructured And Solution-Processed Complex Oxide Assemblies, Zimu Zhou

Doctoral Dissertations

Miniaturization of conventional nonvolatile (NVM) memory devices is rapidly approaching the physical limitations of the constituent materials. An emerging random access memory (RAM), nanoscale resistive RAM (RRAM), has the potential to replace conventional nonvolatile memory and could foster novel type of computing due to its fast switching speed, high scalability, and low power consumption. RRAM, or memristors, represent a class of two terminal devices comprising an insulating layer, such as a metal oxide, sandwiched between two terminal electrodes that exhibits two or more distinct resistance states that depend on the history of the applied bias. While the sudden resistance reduction …


Multiscale Modeling Of Carbon Fibers/Graphene Nanoplatelets/Epoxy Hybrid Composites For Aerospace Applications, Hashim Al Mahmud Jan 2020

Multiscale Modeling Of Carbon Fibers/Graphene Nanoplatelets/Epoxy Hybrid Composites For Aerospace Applications, Hashim Al Mahmud

Dissertations, Master's Theses and Master's Reports

Significant research effort has been dedicated for decades to improve the mechanical properties of aerospace polymer-based composite materials. Lightweight epoxy-based composite materials have increasingly replaced the comparatively heavy and expensive metal alloys used in aeronautical and aerospace structural components. In particular, carbon fibers (CF)/graphene nanoplatelets (GNP)/epoxy hybrid composites can be used for this purpose owing to their high specific stiffness and strength. Therefore, this work has been completed to design, predict, and optimize the effective mechanical properties of CF/GNP/epoxy composite materials at different length scales using a multiscale modeling approach. The work-flow of modeling involves a first step of using …


Graphene/Oxide Interactions With Polymer Networks Modeled Using Molecular Dynamics, Matthew Alan Reil Jan 2020

Graphene/Oxide Interactions With Polymer Networks Modeled Using Molecular Dynamics, Matthew Alan Reil

Electronic Theses and Dissertations

Due to its unique physical properties, graphene has shown great promise as an additive to Polymer Matrix Composites (PMCs) for material property enhancement. Achieving homogeneous dispersion of the graphene platelets within a polymeric network is critical to realizing these enhancements. Research has shown that achieving homogeneous dispersion of graphene platelets within PMCs is challenging as graphene is immiscible with most polymeric networks. This work used Molecular Dynamics (MD) simulations to demonstrate dispersion of graphene platelets within PMCs is inhibited by molecular surface charge potentials. Further simulations were conducted to demonstrate functionalized forms of graphene, specifically graphene oxide, have altered surface …


Artificial Synthetic Scaffolds For Tissue Engineering Application Emphasizing The Role Of Biophysical Cues, Samerender Nagam Hanumantharao Jan 2020

Artificial Synthetic Scaffolds For Tissue Engineering Application Emphasizing The Role Of Biophysical Cues, Samerender Nagam Hanumantharao

Dissertations, Master's Theses and Master's Reports

The mechanotransduction of cells is the intrinsic ability of cells to convert the mechanical signals provided by the surrounding matrix and other cells into biochemical signals that affect several distinct processes such as tumorigenesis, wound healing, and organ formation. The use of biomaterials as an artificial scaffold for cell attachment, differentiation and proliferation provides a tool to modulate and understand the mechanotransduction pathways, develop better in vitro models and clinical remedies. The effect of topographical cues and stiffness was investigated in fibroblasts using polycaprolactone (PCL)- Polyaniline (PANI) based scaffolds that were fabricated using a self-assembly method and electrospinning. Through this …


Nanostructured Metal Thin Films As Components Of Composite Membranes For Separations And Catalysis, Michael J. Detisch Jan 2020

Nanostructured Metal Thin Films As Components Of Composite Membranes For Separations And Catalysis, Michael J. Detisch

Theses and Dissertations--Chemical and Materials Engineering

Novel metallic thin film composite membranes are synthesized and evaluated in this work for improved separations and catalysis capabilities. Advances in technology that allow for improved membrane performance in solvent separations are desirable for low molecular weight organic separation applications such as those in pharmaceutical industries. Additionally, the introduction of catalytic materials into membrane systems allow for optimization of complex processes in a single step. By adding a nanostructured metallic thin film to its surface, a polymer membrane may be modified to exhibit these improved properties. Using magnetron sputtering, thin metal films may be deposited on commercially available membranes to …


Impact Of Chain Architecture On The Thickness Dependence Of Physical Aging Rate Of Thin Polystyrene Films, Gregory Brown, Elizabeth Lewis, Bryan D. Vogt Jan 2020

Impact Of Chain Architecture On The Thickness Dependence Of Physical Aging Rate Of Thin Polystyrene Films, Gregory Brown, Elizabeth Lewis, Bryan D. Vogt

Williams Honors College, Honors Research Projects

The dynamics of polymer thin films have been demonstrated to be significantly altered from the bulk, but the origins of such differences are not well defined. In this work, we seek to understand the differences in the structural dynamics (or physical aging) of polystyrene (PS) through branching and other well defined architectures (comb and centipede). The aging dynamics of ultrathin films (< 30 nm) differ from relatively thick films (100-150nm) with linear PS thin films aging more rapidly than the relatively “bulk-like” thick films. Ellipsometric measurements are used to characterize the physical aging rate of the films. The change in film thickness and refractive index as the films are held below the glass transition temperature (Tg) provides a simple measure of the physical aging. In this study, four different architectures (linear, comb, 4 arm star, and centipede) will be investigated. For each PS architecture, the aging rate will be determined for film …


Synthesis Of Vo2/Poly(Mma-Co-Dmemuabr) Antimicrobial/Thermochromic Dual-Functional Coating And Reactivity Ratios Study, Yixian Liu Nov 2019

Synthesis Of Vo2/Poly(Mma-Co-Dmemuabr) Antimicrobial/Thermochromic Dual-Functional Coating And Reactivity Ratios Study, Yixian Liu

Electronic Thesis and Dissertation Repository

Antimicrobial/thermochromic dual-functional coatings were successfully synthesized via UV-curing. The quaternary ammonium compound (QAC) N,N-dimethyl-N-{2-[(2-methylprop-2-enoyl)oxy]ethyl}undecane-1-aminium bromide (dMEMUABr) was synthesized and copolymerized with methyl methacrylate (MMA) for antimicrobial properties. Vanadium oxide (VO2) nanoparticles were evenly dispersed within the coating, providing thermochromic properties. The dual-functional coating showed high luminous transmittance (Tlum(25°C) =36.1 %) and solar energy modulation ( Tsol=5.8 %). 90.3 % of bacteria reduction was observed against Escherichia coli within 24 h contact. To further understand the sequence distribution of the copolymer poly(MMA-co-dMEMUABr), the reactivity ratios of MMA and dMEMUABr monomer were studied and compared under thermal …


Top-Down And Bottom-Up Fabrication Of Key Components In Miniature Energy Storage Devices, Wenhao Li Oct 2019

Top-Down And Bottom-Up Fabrication Of Key Components In Miniature Energy Storage Devices, Wenhao Li

Doctoral Dissertations

The advent of miniature electronic devices demands power sources of commensurate form factors. This spurs the research of micro energy storage devices, e.g., 3D microbatteries. A 3D microbattery contains nonplanar microelectrodes with high aspect ratio and high surface area, separated by a nanoscale electrolyte. The device takes up a total volume as small as 10 mm3, allowing it to serve on a chip and to provide power in-situ. The marriage of nanotechnology and electrochemical energy storage makes microbattery research a fascinating field with both scientific excitement and application prospect. However, successful fabrication of well-functioned key components …


Bioinspired Complex Nanoarchitectures By Dna Supramolecular Polymerization, Laura A. Lanier Oct 2019

Bioinspired Complex Nanoarchitectures By Dna Supramolecular Polymerization, Laura A. Lanier

Doctoral Dissertations

Bioinspired nanoarchitectures are of great interest for applications in fields such as nanomedicine, tissue engineering, and biosensing. With this interest, understanding how the physical properties of these complex nanostructures relate to their function is increasingly important. This dissertation describes the creation of complex nanoarchitectures with controlled structure and the investigation of the effect of nanocarrier physical properties on cell uptake for applications in nanomedicine. DNA self-assembly by supramolecular polymerization was chosen to create complex nanostructures of controlled architectures. We demonstrated that the supramolecular polymerization of DNA known as hybridization chain reaction (HCR) is in fact a living polymerization. The living …


Engineering Nanomaterials For Imaging And Therapy Of Bacteria And Biofilm-Associated Infections, Akash Gupta Oct 2019

Engineering Nanomaterials For Imaging And Therapy Of Bacteria And Biofilm-Associated Infections, Akash Gupta

Doctoral Dissertations

Infections caused by multidrug-resistant (MDR) bacteria pose a serious global burden of mortality, causing thousands of deaths each year. The “superbug” risk is further exacerbated by chronic infections generated from antibiotic-resistant biofilms that are highly resistant to available treatments. Synthetic macromolecules such as polymers and nanoparticles have emerged as promising antimicrobials. Moreover, ability to modulate nanomaterial interaction with bacterial cellular systems plays a pivotal role in improving the efficacy of the strategy. In the initial studies on engineering nanoparticle surface chemistry, I investigated the role played by surface ligands in determining the antimicrobial activity of the nanoparticles. In further study, …


A Study Of Protein And Peptide-Directed Nanoparticle Synthesis For Catalytic Materials, Abdollah Mosleh Aug 2019

A Study Of Protein And Peptide-Directed Nanoparticle Synthesis For Catalytic Materials, Abdollah Mosleh

Graduate Theses and Dissertations

Nanoparticles have received much attentions due to their unique properties that makes them suitable candidates for a broad range of applications. As the size of particles decreases, their surface area-to-volume ratio would increase which is the main cause of much attention. In addition to the size, their morphologies and compositions may also play important roles for defining unique properties. Nanoparticle synthesis include both bottom-up and top-down strategies. To control the process of inorganic nanoparticles synthesis one could follow the bottom-up approach to have atom-level control over their compositions, morphologies, phases, and sizes which is the subject of this work. Due …


Rheological Investigations Of Self-Assembled Block Copolymer Nanocomposites With Complex Architectures, Benjamin Yavitt Jul 2019

Rheological Investigations Of Self-Assembled Block Copolymer Nanocomposites With Complex Architectures, Benjamin Yavitt

Doctoral Dissertations

The self-assembly of block copolymers (BCP) into microphase separated structures is an attractive route to template and assemble functional nanoparticles (NP) into highly ordered nanocomposites and is central to the “bottom up” fabrication of future materials with tunable electronic, optical, magnetic, and mechanical properties. The optimization of the co-assembly requires an understanding of the fundamentals of phase behavior, intermolecular interactions and dynamics of the polymeric structure. Rheology is a novel characterization tool to investigate these processes in such systems that are not accessible by other means. With the combination of X-ray scattering techniques, structure-property relationships are determined as a function …


Nano-Enhanced Composite Membranes For Water Desalination, Benjamin Fredrik Victor Sundling Von Fürstenrecht Jun 2019

Nano-Enhanced Composite Membranes For Water Desalination, Benjamin Fredrik Victor Sundling Von Fürstenrecht

Materials Engineering

In theory single walled carbon nanotubes (SWCNT) will aid in ion rejection due hydrophobicity and smoothness of the SWCNT. An efficient means of water desalination utilizing SWCNT in a membrane seems plausible. A lyotropic liquid crystal (LLC) solution was made with a synthesized polymerizable surfactant methacryloxy ethyl hexadecyl dimethyl ammonium bromide (C16MA) to help with vertical alignment of SWCNT. Due to SWCNT lack of solubility and tendency to agglomerate in water, a dispersion performed using an inert surfactant centrimonium bromide (CTAB) to make sure that the SWCNT were homogeneously dispersed in the solution without altering the hexagonal packing factor of …


Iron-Containing Nanoparticles For The Treatment Of Chrionic Biofilm Infections In Cystic Fibrosis, Leisha M. A. Martin Apr 2019

Iron-Containing Nanoparticles For The Treatment Of Chrionic Biofilm Infections In Cystic Fibrosis, Leisha M. A. Martin

Nanoscience and Microsystems ETDs

Cystic fibrosis (CF) is the most common genetic disease resulting in the morbidity and mortality of Caucasian children and adults worldwide. Due to a genetic mutation resulting in malfunction of the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) protein, CF patients produce highly viscous mucus in their respiratory tract. This leads to impairment of the mucociliary clearance of inhaled microbes. In addition to reduced microbial clearance, anoxic environmental conditions in the lungs promote biofilm-mode growth of the pathogenic bacterial species Pseudomonas aeruginosa. Chronic infections of P. aeruginosa begin in early childhood and typically persist until respiratory failure and death result. The …