Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Nanoscience and Nanotechnology

Surface Area And Electrocatalytic Properties Of Feni Nanoparticles For The Oxygen Evolution Reaction (Oer), James Burrow May 2018

Surface Area And Electrocatalytic Properties Of Feni Nanoparticles For The Oxygen Evolution Reaction (Oer), James Burrow

Chemical Engineering Undergraduate Honors Theses

Iron-nickel bimetallic electrocatalysts have recently emerged as some of the best candidates for the oxygen evolution reaction (OER) in alkaline electrolyte. Understanding the effects of composition and morphology of iron-nickel nanoparticles is crucial for optimization and enhanced electrocatalyst performance. Both physical surface area and electrochemical surface area (ECSA) are functions of morphology. In this study, four different iron-nickel nanoparticle catalysts were synthesized. The catalysts were varied based on morphology (alloy versus core-shell) and composition (low, medium, and high stabilizer concentration). Brunauer-Emmett-Teller (BET) surface area analysis was conducted on three of the synthesized iron-nickel nanoparticles using a physisorption analyzer while electrochemical …


Surfactant Assisted Dispersion Of Single-Walled Carbon Nanotubes In Polyvinylpyrrolidone Solutions, Tennison Yu Aug 2014

Surfactant Assisted Dispersion Of Single-Walled Carbon Nanotubes In Polyvinylpyrrolidone Solutions, Tennison Yu

Electronic Thesis and Dissertation Repository

Obtaining stable aqueous dispersions is one of the main challenges hindering a widespread and effective use of single-walled carbon nanotubes (SWNT) in many applications. Although it has been recognized that their versatility makes them an extremely attractive material, the unique molecular structure that gives SWNTs their unmatched electronic, mechanical, and thermal properties is also responsible for strong van der Waals interactions. This, combined with extremely high aspect ratios and flexibility, causes SWNTs to adhere strongly into tightly bundled ropes. In these bundles, SWNTs are not as useful as their linearized unbundled equivalents. Thus, in order to take advantage of their …