Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Nanoscience and Nanotechnology

Fabrication And Characterization Of Iron-Based Catalysts For The Dehydrogenation Of Fossil Fuels, Victoria Isabel Reyes Dec 2022

Fabrication And Characterization Of Iron-Based Catalysts For The Dehydrogenation Of Fossil Fuels, Victoria Isabel Reyes

Open Access Theses & Dissertations

For a prosperous and sustainable future, hydrogen is an encouraging solution due to its simple transition for industrial decarbonization and synergy for economic development. Paradoxically, current hydrogen production pathways release substantial amount of greenhouse gases into the atmosphere contributing to climate change. To keep up with increasing demand, hydrogen could be produced through microwave-assisted thermocatalytic dehydrogenation of fossil fuels without emitting carbon dioxide. This requires specified catalysts to meet the requirements of hydrogen yield and selectivity. The objective of the present research is to fabricate, characterize, and compare iron-based alumina (FeAl_x O_y) catalysts produced via solution combustion synthesis and iron-based …


Microscopic And Spectroscopic Analysis Of Wo3 And Ti-Doped Wo3 Thin Films, Young Taek Yun Jan 2012

Microscopic And Spectroscopic Analysis Of Wo3 And Ti-Doped Wo3 Thin Films, Young Taek Yun

Open Access Theses & Dissertations

Tungsten oxide (WO3) has been a subject of high interest for its unique properties, and recently for its importance in different types of industrial applications which ranges from non-emissive displays, optical, microelectronic, catalytic/photocatalytic, humidity, temperature, gas, and biosensor devices. In this study, WO3 and Ti doped thin films were prepared using radio frequency magnetron reactive sputtering at different substrate temperatures ranging from room temperature to 500 ºC in increments of 100 ºC. After forming a hypothesis based on knowledge of established WO3 properties, we attempt in this work to investigate how the doping influences the roughness and the mean grain …


Development Of Wide Band Gap Semiconductor Materials For Renewable Energy, S.M. Sarif Masud Jan 2010

Development Of Wide Band Gap Semiconductor Materials For Renewable Energy, S.M. Sarif Masud

Open Access Theses & Dissertations

Several new wide band gap semiconductor nanocomposite photocatalytic materials have been synthesized from HTiNbO5 and HNb3O8 for solar energy conversion. As a source of renewable energy, the materials are being tested to produce hydrogen fuel from water via photolysis. The materials have high surface areas, are macroporous, and have flatband potentials suitable for reducing water to create hydrogen. Under visible or ultra violet light, the materials were found to be very promising as hydrogen evolving photocatalysts. As part of the synthesis of the composites, the catalysts also exhibited excellent catalytic activity under UV light for reducing ionic platinum and gold …