Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Nanoscience and Nanotechnology

Platinum Nanoparticle Decorated Sio2 Microfibers As Catalysts For Micro Unmanned Underwater Vehicle Propulsion, Bolin Chen, Nathaniel T. Garland, Jason Geder, Marius Pruessner, Eric Mootz, Allison Cargill, Anne Leners, Granit Vokshi, Jacob Davis, Wyatt Burns, Michael A. Daniele, Josh Kogot, Igor L. Medintz, Jonathan C. Claussen Jun 2017

Platinum Nanoparticle Decorated Sio2 Microfibers As Catalysts For Micro Unmanned Underwater Vehicle Propulsion, Bolin Chen, Nathaniel T. Garland, Jason Geder, Marius Pruessner, Eric Mootz, Allison Cargill, Anne Leners, Granit Vokshi, Jacob Davis, Wyatt Burns, Michael A. Daniele, Josh Kogot, Igor L. Medintz, Jonathan C. Claussen

Jonathan C. Claussen

Micro unmanned underwater vehicles (UUVs) need to house propulsion mechanisms that are small in size but sufficiently powerful to deliver on-demand acceleration for tight radius turns, burst-driven docking maneuvers, and low-speed course corrections. Recently, small-scale hydrogen peroxide (H2O2) propulsion mechanisms have shown great promise in delivering pulsatile thrust for such acceleration needs. However, the need for robust, high surface area nanocatalysts that can be manufactured on a large scale for integration into micro UUV reaction chambers is still needed. In this report, a thermal/electrical insulator, silicon oxide (SiO2) microfibers, is used as a support for platinum nanoparticle (PtNP) catalysts ...


Platinum Nanoparticle Decorated Sio2 Microfibers As Catalysts For Micro Unmanned Underwater Vehicle Propulsion, Bolin Chen, Nathaniel T. Garland, Jason Geder, Marius Pruessner, Eric Mootz, Allison Cargill, Anne Leners, Granit Vokshi, Jacob Davis, Wyatt Burns, Michael A. Daniele, Josh Kogot, Igor L. Medintz, Jonathan C. Claussen Mar 2017

Platinum Nanoparticle Decorated Sio2 Microfibers As Catalysts For Micro Unmanned Underwater Vehicle Propulsion, Bolin Chen, Nathaniel T. Garland, Jason Geder, Marius Pruessner, Eric Mootz, Allison Cargill, Anne Leners, Granit Vokshi, Jacob Davis, Wyatt Burns, Michael A. Daniele, Josh Kogot, Igor L. Medintz, Jonathan C. Claussen

Jonathan C. Claussen

Micro unmanned underwater vehicles (UUVs) need to house propulsion mechanisms that are small in size but sufficiently powerful to deliver on-demand acceleration for tight radius turns, burst-driven docking maneuvers, and low-speed course corrections. Recently, small-scale hydrogen peroxide (H2O2) propulsion mechanisms have shown great promise in delivering pulsatile thrust for such acceleration needs. However, the need for robust, high surface area nanocatalysts that can be manufactured on a large scale for integration into micro UUV reaction chambers is still needed. In this report, a thermal/electrical insulator, silicon oxide (SiO2) microfibers, is used as a support for platinum nanoparticle (PtNP) catalysts ...


Platinum Nanoparticle Decorated Sio2 Microfibers As Catalysts For Micro Unmanned Underwater Vehicle Propulsion, Bolin Chen, Nathaniel T. Garland, Jason Geder, Marius Pruessner, Eric Mootz, Allison Cargill, Anne Leners, Granit Vokshi, Jacob Davis, Wyatt Burns, Michael A. Daniele, Josh Kogot, Igor L. Medintz, Jonathan C. Claussen Jan 2016

Platinum Nanoparticle Decorated Sio2 Microfibers As Catalysts For Micro Unmanned Underwater Vehicle Propulsion, Bolin Chen, Nathaniel T. Garland, Jason Geder, Marius Pruessner, Eric Mootz, Allison Cargill, Anne Leners, Granit Vokshi, Jacob Davis, Wyatt Burns, Michael A. Daniele, Josh Kogot, Igor L. Medintz, Jonathan C. Claussen

Mechanical Engineering Publications

Micro unmanned underwater vehicles (UUVs) need to house propulsion mechanisms that are small in size but sufficiently powerful to deliver on-demand acceleration for tight radius turns, burst-driven docking maneuvers, and low-speed course corrections. Recently, small-scale hydrogen peroxide (H2O2) propulsion mechanisms have shown great promise in delivering pulsatile thrust for such acceleration needs. However, the need for robust, high surface area nanocatalysts that can be manufactured on a large scale for integration into micro UUV reaction chambers is still needed. In this report, a thermal/electrical insulator, silicon oxide (SiO2) microfibers, is used as a support for platinum nanoparticle (PtNP) catalysts ...


Platinum Nanoparticle Decorated Sio2 Microfibers As Catalysts For Micro Unmanned Underwater Vehicle Propulsion, Bolin Chen, Nathaniel T. Garland, Jason Geder, Marius Pruessner, Eric Mootz, Allison Cargill, Anne Leners, Granit Vokshi, Jacob Davis, Wyatt Burns, Michael A. Daniele, Josh Kogot, Igor L. Medintz, Jonathan C. Claussen Jan 2016

Platinum Nanoparticle Decorated Sio2 Microfibers As Catalysts For Micro Unmanned Underwater Vehicle Propulsion, Bolin Chen, Nathaniel T. Garland, Jason Geder, Marius Pruessner, Eric Mootz, Allison Cargill, Anne Leners, Granit Vokshi, Jacob Davis, Wyatt Burns, Michael A. Daniele, Josh Kogot, Igor L. Medintz, Jonathan C. Claussen

Mechanical Engineering Publications

Micro unmanned underwater vehicles (UUVs) need to house propulsion mechanisms that are small in size but sufficiently powerful to deliver on-demand acceleration for tight radius turns, burst-driven docking maneuvers, and low-speed course corrections. Recently, small-scale hydrogen peroxide (H2O2) propulsion mechanisms have shown great promise in delivering pulsatile thrust for such acceleration needs. However, the need for robust, high surface area nanocatalysts that can be manufactured on a large scale for integration into micro UUV reaction chambers is still needed. In this report, a thermal/electrical insulator, silicon oxide (SiO2) microfibers, is used as a support for platinum nanoparticle (PtNP) catalysts ...


Structural, Electronic And Catalytic Properties Of Graphene-Supported Platinum Nanoclusters, Ioanna Fampiou Aug 2014

Structural, Electronic And Catalytic Properties Of Graphene-Supported Platinum Nanoclusters, Ioanna Fampiou

Doctoral Dissertations

Carbon materials are predominantly used as catalytic supports due to their high surface area, excellent electrical conductivity, resistance to corrosion and structural stability. Graphene, a 2D monolayer of graphite, with its excellent thermal, electronic and mechanical features, has been considered a promising support material for next generation metal-graphene nanocatalysts. The main focus of this dissertation is to investigate the properties of such metal-graphene nanocomposites using computational methods, and to develop a comprehensive understanding of the experimentally observed enhanced catalytic activity of graphene-supported Platinum (Pt) clusters.

In particular, we seek to understand the role of graphene supports on the ground-state morphology ...