Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Nanoscience and Nanotechnology

Preparation Of High-Strength Nanometer Scale Twinned Coating And Foil, Xinghang Zhang, Amit Misra, Michael Nastasi, Richard G. Hoagland Jul 2006

Preparation Of High-Strength Nanometer Scale Twinned Coating And Foil, Xinghang Zhang, Amit Misra, Michael Nastasi, Richard G. Hoagland

Mechanical & Materials Engineering Faculty Publications

Very high strength single phase stainless steel coating has been prepared by magnetron sputtering onto a substrate. The coating has a unique microstructure of nanometer spaced twins that are parallel to each other and to the substrate surface. For cases where the coating and substrate do not bind strongly, the coating can be peeled off to provide foil.


Piezoelectromagnetic Waves In A Ceramic Plate Between Two Ceramic Half-Spaces, S. N. Jiang, Q. Jiang, X. F. Li, S. H. Guo, H. G. Zhou, J. S. Chang Jan 2006

Piezoelectromagnetic Waves In A Ceramic Plate Between Two Ceramic Half-Spaces, S. N. Jiang, Q. Jiang, X. F. Li, S. H. Guo, H. G. Zhou, J. S. Chang

Mechanical & Materials Engineering Faculty Publications

We analyze the propagation of piezoelectromagnetic waves guided by a plate of polarized ceramics between two ceramic half-spaces. An exact dispersion relation is obtained, which reduces to a few known elastic, electromagnetic, and quasistatic piezoelectric wave solutions in the literature as special cases. Numerical solutions to the equation that determines the dispersion relation show the existence of guided waves. The results are useful for acoustic wave and microwave devices.


Nanoparticle-Induced Negative Differential Resistance And Memory Effect In Polymer Bistable Light-Emitting Device, Ricky J. Tseng, Jianyong Ouyang, Chih-Wei Chu, Jinsong Huang, Yang Yang Jan 2006

Nanoparticle-Induced Negative Differential Resistance And Memory Effect In Polymer Bistable Light-Emitting Device, Ricky J. Tseng, Jianyong Ouyang, Chih-Wei Chu, Jinsong Huang, Yang Yang

Mechanical & Materials Engineering Faculty Publications

Recently, electrical bistability was demonstrated in polymer thin films incorporated with metal nanoparticles [J. Ouyang, C. W. Chu, C. R. Szmanda, L. P. Ma, and Y. Yang, Nat. Mater. 3, 918 (2004)]. In this letter, we show the evidence that electrons are the dominant charge carriers in these bistable devices. Direct integration of bistable polymer layer with a light-emitting polymer layer shows a unique light-emitting property modulated by the electrical bistability. A unique negative differential resistance induced by the charged gold nanoparticles is observed due to the charge trapping effect from the nanoparticles when interfaced with the light-emitting layer.


Efficient Inverted Polymer Solar Cells, G. Li, C.-W. Chu, V. Shrotriya, Jinsong Huang, Y. Yang Jan 2006

Efficient Inverted Polymer Solar Cells, G. Li, C.-W. Chu, V. Shrotriya, Jinsong Huang, Y. Yang

Mechanical & Materials Engineering Faculty Publications

We investigate the effect of interfacial buffer layers—vanadium oxide (V2O5) and cesium carbonate (Cs2CO3)—on the performance of polymer solar cells based on regioregular poly-(3-hexylthiophene) and [6,6]-phenyl C60 butyric acid methyl ester blend. The polarity of solar cells can be controlled by the relative positions of these two interfacial layers. Efficient inverted polymer solar cells were fabricated with the structure of indium tin oxide (ITO)/Cs2CO3/polymer blend/vanadium oxide (V2O5)/aluminum (Al). Short-circuit current of 8.42 mA/cm2, open-circuit voltage of ...


Improving The Power Efficiency Of White Light-Emitting Diode By Doping Electron Transport Material, Jinsong Huang, Wei-Jen Hou, Juo-Hao Li, Gang Li, Yang Yang Jan 2006

Improving The Power Efficiency Of White Light-Emitting Diode By Doping Electron Transport Material, Jinsong Huang, Wei-Jen Hou, Juo-Hao Li, Gang Li, Yang Yang

Mechanical & Materials Engineering Faculty Publications

Highly efficient white light emission was realized via the partial energy transfer from blue host polyfluorene (PF) to orange light emission dopant rubrene. A more balanced charge transport was achieved by adding an electron transport material, 2-(4-biphenylyl)-5-(4-tertbutylphenyl)-1,3,4-oxadiazole (PBD), into the PF-rubrene system to enhance the electron transportation. Efficiency improvement by as much as a factor of 2 has been observed through the addition of PBD. These devices can easily reach high luminance at low driving voltages, thus achieving high power efficiency at high luminance (14.8, 13.5, and 12.0 lm/W at ...


The Role Of Electrospinning In The Emerging Field Of Nanomedicine, S. Y. Chew, Y. Wen, Yuris A. Dzenis, K. W. Leong Jan 2006

The Role Of Electrospinning In The Emerging Field Of Nanomedicine, S. Y. Chew, Y. Wen, Yuris A. Dzenis, K. W. Leong

Mechanical & Materials Engineering Faculty Publications

The fact that in vivo the extracellular matrix or substratum with which cells interact often includes topography at the nanoscale underscores the importance of investigating cell-substrate interactions and performing cell culture at the submicron scale. An important and exciting direction of research in nanomedicine would be to gain an understanding and exploit the cellular response to nanostructures. Electrospinning is a simple and versatile technique that can produce a macroporous scaffold comprising randomly oriented or aligned nanofibers. It can also accommodate the incorporation of drug delivery function into the fibrous scaffold. Endowed with both topographical and biochemical signals such electrospun nanofibrous ...


In Vivo Laparoscopic Robotics, Mark E. Rentschler, Stephen R. Platt, Jason Dumpert, Shane M. Farritor, Dmitry Oleynikov Jan 2006

In Vivo Laparoscopic Robotics, Mark E. Rentschler, Stephen R. Platt, Jason Dumpert, Shane M. Farritor, Dmitry Oleynikov

Mechanical & Materials Engineering Faculty Publications

Robotic laparoscopic surgery is evolving to include in vivo robotic assistants. The impetus for the development of this technology is to provide surgeons with additional viewpoints and unconstrained manipulators that improve safety and reduce patient trauma. A family of these robots have been developed to provide vision and task assistance. Fixed-base and mobile robots have been designed and tested in animal models with much success. A cholecystectomy, prostatectomy, and nephrectomy have all been performed with the assistance of these robots. These early successful tests show how in vivo laparoscopic robotics may be part of the next advancement in surgical technology.


Generating Random Surfaces With Desired Autocorrelation Length, Yilei Zhang, Sriram Sundararajan Jan 2006

Generating Random Surfaces With Desired Autocorrelation Length, Yilei Zhang, Sriram Sundararajan

Mechanical Engineering Publications

A versatile surface processing method based on electrostatic deposition of particles and subsequent dry etching is shown to be able to tailor the autocorrelation length of a random surface by varying particle size and coverage. An explicit relation between final autocorrelation length, surface coverage of the particles, particle size, and etch depth is built. The autocorrelation length of the final surface closely follows a power law decay with particle coverage, the most significant processing parameter. Experimental results on silicon substrates agree reasonably well with model predictions.