Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering

Mechanical Engineering Publications

Silicon

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Nanoscience and Nanotechnology

Generating Random Surfaces With Desired Autocorrelation Length, Yilei Zhang, Sriram Sundararajan Jan 2006

Generating Random Surfaces With Desired Autocorrelation Length, Yilei Zhang, Sriram Sundararajan

Mechanical Engineering Publications

A versatile surface processing method based on electrostatic deposition of particles and subsequent dry etching is shown to be able to tailor the autocorrelation length of a random surface by varying particle size and coverage. An explicit relation between final autocorrelation length, surface coverage of the particles, particle size, and etch depth is built. The autocorrelation length of the final surface closely follows a power law decay with particle coverage, the most significant processing parameter. Experimental results on silicon substrates agree reasonably well with model predictions.


The Effect Of Autocorrelation Length On The Real Area Of Contact And Friction Behavior Of Rough Surfaces, Yilei Zhang, Sriram Sundararajan Jan 2005

The Effect Of Autocorrelation Length On The Real Area Of Contact And Friction Behavior Of Rough Surfaces, Yilei Zhang, Sriram Sundararajan

Mechanical Engineering Publications

Autocorrelation length (ACL) is a surface roughness parameter that provides spatial information of surfacetopography that is not included in amplitude parameters such as root-mean-square roughness. This paper presents a relationship between ACL and the friction behavior of a rough surface. The influence of ACL on the peak distribution of a profile is studied based on Whitehouse and Archard’s classical analysis [Whitehouse and ArchardProc. R. Soc. London, Ser. A316, 97 (1970)] and their results are extended to compare profiles from different surfaces. The probability density function of peaks and the mean peak height of a profile are given as functions ...