Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Materials Science and Engineering

2016

Institution
Keyword
Publication
Publication Type

Articles 1 - 30 of 79

Full-Text Articles in Nanoscience and Nanotechnology

Lithium-Sulfur (Selenium) Batteries: Interface Issues And Solving Strategies, Nian-Wu Li, Ya-Xia Yin, Yu-Guo Guo Dec 2016

Lithium-Sulfur (Selenium) Batteries: Interface Issues And Solving Strategies, Nian-Wu Li, Ya-Xia Yin, Yu-Guo Guo

Journal of Electrochemistry

The stable interface is still a challenge for lithium-sulfur (selenium) batteries because of the low conductivity of sulfur (selenium), dissolution of polysulfide (polyselenide), volume expansion of sulfur (selenium), and lithium dendrite growth. This review describers some recent developments in lithium-sulfur (selenium) batteries and highlights our efforts in this field. The possible strategies for building stable interface in the lithium-sulfur (selenium) batteries including nano-restriction effect, chemical bonding, interface adsorption, surface coating, electrolyte optimization, and Lithium anode treatment have been discussed.


Syntheses Of Ag@Pd@Pt Nanoparticles With Tunable Shell Thickness For Electrochemical Oxidation Of Formic Acid, Xiao-Dong Lin, Du-Hong Chen, Zhong-Qun Tian Dec 2016

Syntheses Of Ag@Pd@Pt Nanoparticles With Tunable Shell Thickness For Electrochemical Oxidation Of Formic Acid, Xiao-Dong Lin, Du-Hong Chen, Zhong-Qun Tian

Journal of Electrochemistry

In an effort to lower cost of a catalyst, the silver (Ag) core with palladium (Pd) layer then platinum (Pt) island (Ag@Pd@Pt) nanoparticles were synthesized and the electrocatalytic activity of Ag@Pd@Pt nanoparticles on formic acid was compared with that of Au@Pd@Pt nanoparticles reported previously. The results showed that the existence of a small amount of Pt could significantly improve the activity of the catalyst. When the surface coverage of Pt approached 0.5 monolayers, the activity of Ag@Pd@Pt nanoparticles reached the maximum. Though the onset potential of the electro-oxidation was slightly more positive (about 50 mV), the overall electrocatalytic activity of …


Stm Investigation Of Oxygen Reduction Reaction On Solid Interface In Fuel Cell, Zhen-Feng Cai, Bing Sun, Wen-Jie Jiang, Ting Chen, Dong Wang, Li-Jun Wan Dec 2016

Stm Investigation Of Oxygen Reduction Reaction On Solid Interface In Fuel Cell, Zhen-Feng Cai, Bing Sun, Wen-Jie Jiang, Ting Chen, Dong Wang, Li-Jun Wan

Journal of Electrochemistry

An electrocatalyst for oxygen reduction reaction (ORR) is an important component for fuel cells. An investigation at interfacial electrochemical reactions toward ORR at a molecular scale benefits mechanistic understanding as well as rational design of catalysts. Scanning tunneling microscopy (STM) has been proven to be a powerful tool to monitor chemical reactions and to provide in-situ information about the interfacial electrochemical reactions at a molecular level. This review summarizes the recent STM studies in monitoring the interface processes such as morphological changes, molecular changes, reaction intermediates, and oxidation products. The prospects of future development in this field are outlined.


Synthesis Of Ultrathin Co3O4 Nanoflakes Film Material For Electrochemical Sensing, Hui-Juan Wang Dec 2016

Synthesis Of Ultrathin Co3O4 Nanoflakes Film Material For Electrochemical Sensing, Hui-Juan Wang

Journal of Electrochemistry

Ultrathin cobalt oxide (Co3O4 ) nanoflakes film material was synthesized by using an electro-deposited cobalt layer as a raw material through a simple oxidation method and followed by a heat treatment at 350 oC. The physical characterizations of the Co3O4 nanoflakes film were performed by scanning electron microscopy (SEM), X-ray diffraction (XRD) and transmission electron microscopy (TEM) technologies, and the electrochemical activity was measured by cyclic voltammetry (CV). As a promising material for electrochemical sensing, the as-synthesized ultrathin Co3O4 nanoflakes film material exhibited excellent electrochemical activity for H2O …


Investigation On Laser Induced Deposition Of Cu-Based Materials At [Bmim]Bf4/Pt Electrode Interface, Min-Min Xu, Jin-Hua Mei, Jian-Lin Yao, Ren-Ao Gu Dec 2016

Investigation On Laser Induced Deposition Of Cu-Based Materials At [Bmim]Bf4/Pt Electrode Interface, Min-Min Xu, Jin-Hua Mei, Jian-Lin Yao, Ren-Ao Gu

Journal of Electrochemistry

By controlling the negative potential, Cu-based materials were deposited at the [BMIm]BF4/Pt electrode interface under the laser irradiation. The effects of laser power and irradiation time on the yield of deposition products were studied by using different laser powers and different irradiation time. The product yield could be directly determined by the size of deposition point through the observation from the optical microscope. Further mechanism study combined with the formula deduced that the thermal effect of the laser could make the electrode surface temperature rise 110 degrees, which can promote the occurrence of electrodeposition. By SEM characterization, the …


Zirconium Diboride, Hexagonal Boron Nitride, And Amorphous Alumina Thin Films For High Temperature Applications, David Murdock Stewart Dec 2016

Zirconium Diboride, Hexagonal Boron Nitride, And Amorphous Alumina Thin Films For High Temperature Applications, David Murdock Stewart

Electronic Theses and Dissertations

The use of microelectronic sensors and actuators in harsh, high temperature environments, such as power plants, turbine engines, and industrial manufacturing, could greatly improve the safety, reliability, and energy efficiency of these processes. The primary challenge in implementing this technology is the breakdown and degradation of thin films used in fabricating these devices when exposed to high temperatures >800 °C and oxidizing atmospheres. Zirconium diboride, hexagonal boron nitride, and amorphous alumina are candidate materials for use as thin film sensor components due to their high melting temperatures and stable phases. Zirconium diboride thin films have metallic-like electrical conductivity and remain …


Synthesis, Characterization, And Fabrication Of All Inorganic Quantum Dot Leds, Haider Baqer Salman Dec 2016

Synthesis, Characterization, And Fabrication Of All Inorganic Quantum Dot Leds, Haider Baqer Salman

Graduate Theses and Dissertations

Quantum Dot LEDs with all inorganic materials are investigated in this thesis. The research was motivated by the potential disruptive technology of core shell quantum dots in lighting and display applications. These devices consisted of three main layers: hole transport layer (HTL), electron transport layer (ETL), and emissive layer where the emission of photons occurs. The latter part was formed of CdSe / ZnS core-shell quantum dots, which were synthesized following hot injection method. The ETL and the HTL were formed of zinc oxide nanocrystals and nickel oxide, respectively. Motivated by the low cost synthesis and deposition, NiO and ZnO …


Interactive Physics And Characteristics Of Photons And Photoelectrons In Hyperbranched Zinc Oxide Nanostructures, Garrett Edward Torix Dec 2016

Interactive Physics And Characteristics Of Photons And Photoelectrons In Hyperbranched Zinc Oxide Nanostructures, Garrett Edward Torix

Graduate Theses and Dissertations

As is commonly known, the world is full of technological wonders, where a multitude of electronic devices and instruments continuously help push the boundaries of scientific knowledge and discovery. These new devices and instruments of science must be utilized at peak efficiency in order to benefit humanity with the most advanced scientific knowledge. In order to attain this level of efficiency, the materials which make up these electronics, or possibly more important, the fundamental characteristics of these materials, must be fully understood. The following research attempted to uncover the properties and characteristics of a selected family of materials. Herein, zinc …


Confinement Effects And Magnetic Interactions In Magnetic Nanostructures, Kristen Lee Stojak Repa Nov 2016

Confinement Effects And Magnetic Interactions In Magnetic Nanostructures, Kristen Lee Stojak Repa

USF Tampa Graduate Theses and Dissertations

Multifunctional nanocomposites are promising for a variety of applications ranging from microwave devices to biomedicine. High demand exists for magnetically tunable nanocomposite materials. My thesis focuses on synthesis and characterization of novel nanomaterials such as polymer nanocomposites (PNCs) and multi-walled carbon nanotubes (MWCNTs) with magnetic nanoparticle (NP) fillers.

Magnetite (Fe3O4) and cobalt ferrite (CoFe2O4) NPs with controlled shape, size, and crystallinity were successfully synthesized and used as PNC fillers in a commercial polymer provided by the Rogers Corporation and poly(vinylidene fluoride). Magnetic and microwave experiments were conducted under frequencies of 1-6 GHz in the presence of …


Creation And Evaluation Of Polymer/Multiwall Carbon Nanotube Films For Structural Vibration Control And Strain Sensing Properties, Weiwei Lin Nov 2016

Creation And Evaluation Of Polymer/Multiwall Carbon Nanotube Films For Structural Vibration Control And Strain Sensing Properties, Weiwei Lin

FIU Electronic Theses and Dissertations

Multifunctional materials both with damping properties and strain sensing properties are very important. They promise to be more weight-efficient, and provide volume-efficient performance, flexibility and potentially, less maintenance than traditional multi-component brass-board systems.

The goal of this dissertation work was to design, synthesize, investigate and apply polyaniline/Multiwall carbon nanotube (PANI/MWCNT) and polyurethane (PU) /MWCNT composites films for structural vibration control and strain sensors using free layer damping methods and static and dynamic strain sensing test methods.

The PANI/MWCNT was made by in situ polymerization of PANI in the presence of MWCNT, then frit compression was used to make circular and …


Micro/Nano-Structured Electrode Materials For Sodium-Ion Batteries, Shuang Yuan, Yun-Hai Zhu, Sai Wang, Tao Sun, Xin-Bo Zhang, Qiang Wang Oct 2016

Micro/Nano-Structured Electrode Materials For Sodium-Ion Batteries, Shuang Yuan, Yun-Hai Zhu, Sai Wang, Tao Sun, Xin-Bo Zhang, Qiang Wang

Journal of Electrochemistry

Sodium has similar physics and chemical properties to lithium, alternatively, sodium (Na)-ion batteries have again aroused a great deal of interest recently, particularly for large-scale stationary energy storage applications due to the practically infinite sodium resources and low cost. However, the technics and materials for Na-ion batteries are immature. Therefore, development of advanced anode and cathode materials for Na-ion batteries is urgently desired but remains a great challenge. This paper briefly reviews some recent progresses in this field, addressing the morphology effects, as well as functions of carbon composite materials toward Na-ion batteries. Several electrode materials with micro/nano-structures based on …


Template-Assisted Hydrothermal Synthesis Of Nio@Co3O4 Hollow Spheres With Hierarchical Porous Surfaces For Supercapacitor Applications, Wen Zhou, Xue-Feng Lu, Ming-Mei Wu, Gao-Ren Li Oct 2016

Template-Assisted Hydrothermal Synthesis Of Nio@Co3O4 Hollow Spheres With Hierarchical Porous Surfaces For Supercapacitor Applications, Wen Zhou, Xue-Feng Lu, Ming-Mei Wu, Gao-Ren Li

Journal of Electrochemistry

Hollow structures have shown great potentials in a variety of important applications, such as energy conversion and storage. In order to further enhance the performance, the rational design of hollow structures with higher complexity in terms of composition and structure is highly desirable and still remains a great challenge. In this work, an efficient strategy was established for the fabrication of novel NiO@Co3O4 hollow spheres (HSs) with hierarchical porous surfaces by silica spheres template-assisted hydrothermal synthesis. The as-fabricated NiO@Co3O4 HSs showed high specific surface area of 219.68 m2·g-1, and significant …


The Study Of Dynamical Electrochemical Impedance Spectroscopy For Oxygen Reduction Reaction On Pt/C Catalyst, Kun-Ming Shi, Jian-Wei Guo, Jia Wang Oct 2016

The Study Of Dynamical Electrochemical Impedance Spectroscopy For Oxygen Reduction Reaction On Pt/C Catalyst, Kun-Ming Shi, Jian-Wei Guo, Jia Wang

Journal of Electrochemistry

With joint techniques of rotating disc electrode(RDE) and electrochemical impedance spectroscopy(EIS), and further establishment on equivalent circuit model, this paper studied oxygen reduction reaction(ORR) on commercial Pt/C catalyst in acid medium. Our results found that the dynamical interface on Pt/C consists of two independent processes: 1) the PtO reduction from Pt surface, 2) the new PtO formation from ORR, thus providing key clues for catalyst stability and activity. This also implied that the dynamical interface facilitates reconstruction for porous electrode, and matches with mass transfer. One important issue is discovered that at high overpotential, the high reaction rate for ORR …


Mechanical Properties Of Stainless Steels With Heterogeneous Nanostructures, Hiromi Miura, Masakazu Kobayashi, Natuko Sugiura, Naoki Yoshinaga Oct 2016

Mechanical Properties Of Stainless Steels With Heterogeneous Nanostructures, Hiromi Miura, Masakazu Kobayashi, Natuko Sugiura, Naoki Yoshinaga

The 8th International Conference on Physical and Numerical Simulation of Materials Processing

No abstract provided.


Wetting And Interfacial Microstructure Of Porous Si3n4/Si3n4 Joint After Silver Metallization, Yanli Zhuang, Tiesong Lin, Shengjin Wang, Peng He, Dusan P. Sekulic, Dechang Jia, Hongmei Wei Oct 2016

Wetting And Interfacial Microstructure Of Porous Si3n4/Si3n4 Joint After Silver Metallization, Yanli Zhuang, Tiesong Lin, Shengjin Wang, Peng He, Dusan P. Sekulic, Dechang Jia, Hongmei Wei

The 8th International Conference on Physical and Numerical Simulation of Materials Processing

No abstract provided.


Review On Joining Of Advanced Materials And Dissimilar Materials In Harbin Institute Of Technology, Jun Qu, Yongping Lei, Peng He, Yunlong Chang Oct 2016

Review On Joining Of Advanced Materials And Dissimilar Materials In Harbin Institute Of Technology, Jun Qu, Yongping Lei, Peng He, Yunlong Chang

The 8th International Conference on Physical and Numerical Simulation of Materials Processing

No abstract provided.


Numerical Simulation Of Heat Transfer In Porous Metals For Cooling Applications, Edgar Avalos Gauna, Yuyuan Zhao Oct 2016

Numerical Simulation Of Heat Transfer In Porous Metals For Cooling Applications, Edgar Avalos Gauna, Yuyuan Zhao

The 8th International Conference on Physical and Numerical Simulation of Materials Processing

No abstract provided.


Analysis Of Corrosion-Induced Diffusion Layer In Zk60a Magnesium Alloy.Pdf, Shumin Li Oct 2016

Analysis Of Corrosion-Induced Diffusion Layer In Zk60a Magnesium Alloy.Pdf, Shumin Li

Shumin Li

Corrosion-induced damage in ZK60A magnesium alloy is analyzed via chemo-mechanical tests. A certain “diffusion” corrosion layer (DCL) is identified, where partial corrosion takes place. This layer is different from the corrosion product layer (CPL). Nanoindentation analysis shows that corrosion modifies mechanical properties in the DCL, which extends up to 8–9 micrometers into the bulk, away from the CPL. Measurements over the DCL indicate a lower elastic modulus and lower fracture toughness compared with the bulk, as well as higher variance (heterogeneity). Elemental analysis confirms the layer is composed of partially oxidized magnesium and diffused chloride ions. Gradual changes in mechanical …


Modelling And Simulation Of The Flexoelectric Effect On A Cantilevered Piezoelectric Nanoplate, Xining Wang Oct 2016

Modelling And Simulation Of The Flexoelectric Effect On A Cantilevered Piezoelectric Nanoplate, Xining Wang

Electronic Thesis and Dissertation Repository

Piezoelectric nanomaterials have attracted increasing attentions due to their distinct electromechanical features, especially the size-dependent properties, which differ greatly from their bulk counterparts.

Due to the large strain gradients presented in nanostructures, the flexoelectricity is believed to be responsible for such size-dependent properties. In this thesis, based on the Kirchhoff plate model and the extended linear piezoelectric theory, a modified continuum mechanics based model is developed to study the size-dependent flexoelectric effect upon the static bending behaviors of a cantilevered piezoelectric nanoplate (PNP). Finite difference method (DFM) is employed to obtain the approximate numerical solutions.

The numerical results indicate that …


An Examination Of The Indentation Size Effect In Fcc Metals And Alloys From A Kinetics Based Perspective Using Nanoindentation, David Earl Stegall Oct 2016

An Examination Of The Indentation Size Effect In Fcc Metals And Alloys From A Kinetics Based Perspective Using Nanoindentation, David Earl Stegall

Mechanical & Aerospace Engineering Theses & Dissertations

The indentation size effect (ISE) in metals is described as the rise in hardness with decreasing depth of indentation and contradicts conventional plasticity behavior. The goal of this dissertation is to further examine the fundamental dislocation mechanisms that may be contributing to the so-called indentation size effect. In this work, we examined several metals and alloys including 99.999% Aluminum (SFE ~200 mJ/m2), 99.95% Nickel (SFE ~125 mJ/m2), 99.95% Silver (SFE ~22 mJ/m2), and three alloys, alpha brass 70/30 (SFE >10 mJ/m2), 70/30 nickel copper (SFE ~100 mJ/ …


Local Writing Of Exchange Biased Domains In A Heterostructure Of Co/Pd Pinned By Magnetoelectric Chromia, Uday Singh, William Echtenkamp, M. Street, Christian Binek, Shireen Adenwalla Sep 2016

Local Writing Of Exchange Biased Domains In A Heterostructure Of Co/Pd Pinned By Magnetoelectric Chromia, Uday Singh, William Echtenkamp, M. Street, Christian Binek, Shireen Adenwalla

Shireen Adenwalla Papers

The writing of micrometer-scaled exchange bias domains by local, laser heating of a thin-film heterostructure consisting of a perpendicular anisotropic ferromagnetic Co/Pd multilayer and a (0001) oriented film of the magnetoelectric antiferromagnet Cr2O3 (chromia) is reported. Exchange coupling between chromia’s boundary magnetization and the ferromagnet leads to perpendicular exchange bias. Focused scanning magneto-optical Kerr measurements are used to measure local hysteresis loops and create a map of the exchange bias distribution as a function of the local boundary magnetization imprinted in the antiferromagnetic pinning layer on field cooling. The robust boundary magnetization of the Cr2O …


Preparations And Photoelectrochemical Properties Of Phosphate Modified Rgo-Biobr Nanocomposites, Shuang-Ying Chen, Zhi-Jun Li, Xu-Liang Zhang, Kang Hu, Rui Yan, Li-Qiang Jing Aug 2016

Preparations And Photoelectrochemical Properties Of Phosphate Modified Rgo-Biobr Nanocomposites, Shuang-Ying Chen, Zhi-Jun Li, Xu-Liang Zhang, Kang Hu, Rui Yan, Li-Qiang Jing

Journal of Electrochemistry

The RGO-BiOBr nanocomposites have been successfully synthesized by a hydrothermal process, and then modified with phosphorous acids. The photoelectrochemical properties of the fabricated RGO-BiOBr nanocomposite films were studied. The results indicate that the photocurrent densities of RGO-BiOBr were much larger compared with those of the bare BiOBr, and interestingly, the photocurrent densities were further improved after phosphate modification. Based on the analyses of the produced hydroxyl radical amounts, the enhanced photocurrent densities could be attributed to the introduction of RGO and to the formed negative fields of modified phosphate groups, which are favorable for electrons to be transferred and for …


Activation Effect Of Nano-Carbon Derived From Co2 On Lead Electrode In Sulfuric Aqueous Solution, Yu-Qiao Song, Hua Zhu, Guang-Jin Zhao, Wen-Long Wu, Shou-Bin Zhou, Di-Hua Wang Aug 2016

Activation Effect Of Nano-Carbon Derived From Co2 On Lead Electrode In Sulfuric Aqueous Solution, Yu-Qiao Song, Hua Zhu, Guang-Jin Zhao, Wen-Long Wu, Shou-Bin Zhou, Di-Hua Wang

Journal of Electrochemistry

Serious sulfation of the negative plate is one of the most popular reasons of the early failure of lead-acid battery. Addition of nano-carbon was proved to be effective for recovering the sulfated electrode and the property of the carbon material always plays an important role. In this work, a new kind of nano-carbon material with high electrical conductivity and good adsorption capability for heavy metal cations, which is electrochemically prepared from CO2 in molten carbonates, was tested as activation additive for the sulfated lead electrode by cyclic voltammetry and SEM measurements. The results showed that the as-prepared carbon can …


WoX/Pedot:Pss Double-Layered Hole-Transport Layers For Efficient And Stable Planar Heterojunction Perovskite Solar Cells, Wen-Yuan Qiao, Qiang Guo, Cong Li, Shuang Ma, Fu-Zhi Wang, Song-Yuan Dai, Zhan-Ao Tan Aug 2016

WoX/Pedot:Pss Double-Layered Hole-Transport Layers For Efficient And Stable Planar Heterojunction Perovskite Solar Cells, Wen-Yuan Qiao, Qiang Guo, Cong Li, Shuang Ma, Fu-Zhi Wang, Song-Yuan Dai, Zhan-Ao Tan

Journal of Electrochemistry

Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) is a commonly used hole-transport material in the perovskite solar cells (PerSCs) structure of perovskite/fullerene planer heterojunction, but it also has a negative effect on the stability of device because of its acidity which will corrode metal oxide transparent electrodes. In this work, a WOx hole-transport layer with high work function was inserted into the PEDOT: PSS and FTO to enhance the stability and photovoltaic performance. The inserted WOx layer not only can avoid direct contact between PEDOT:PSS and FTO, but also can further reduce the contact barrier between the electrode interface. We studied the effect …


Hydrogel Microphones For Stealthy Underwater Listening.Pdf, Shumin Li Aug 2016

Hydrogel Microphones For Stealthy Underwater Listening.Pdf, Shumin Li

Shumin Li

No abstract provided.


Ginseng Polysaccharides Nanoparticles - Synthesis, Characterization, And Biological Activity, Kazi Farida Akhter Aug 2016

Ginseng Polysaccharides Nanoparticles - Synthesis, Characterization, And Biological Activity, Kazi Farida Akhter

Electronic Thesis and Dissertation Repository

North American (NA) ginseng is a widely used medicinal plant. Polysaccharides (PS), the major medicinal fractions derived from NA ginseng root, have been shown several biological activities including anti-carcinogenic, anti-aging, immunostimulatory and antioxidant activity. This work focused on nanoprocessing of ginseng PS for enhancing their immunostimulation. Herein, we have developed a novel microfluidic approach to synthesize ginseng PS nanoparticles (NPs) from NA ginseng root. The microfluidics was found to provide unimodal PS spheres down to 20 nm with very narrow particle size distributions. In addition, the immunostimulating effect was investigated on Murine macrophage cell lines, with the results revealing an …


Dislocation Engineering In Novel Nanowire Structures, Christopher Y. Chow, Samuel T. Reeve, Alejandro Strachan Aug 2016

Dislocation Engineering In Novel Nanowire Structures, Christopher Y. Chow, Samuel T. Reeve, Alejandro Strachan

The Summer Undergraduate Research Fellowship (SURF) Symposium

Leveraging defects is a cornerstone of materials science, and has become increasingly important from bulk to nanostructured materials. We use molecular dynamics simulations to explore the limits of defect engineering by harnessing individual dislocations in nanoscale metallic specimens and utilizing their intrinsic behavior for application in mechanical dampening. We study arrow-shaped, single crystal copper nanowires designed to trap and control the dynamics of dislocations under uniaxial loading. We characterize how nanowire cross-section and stacking-fault energy of the material affects the ability to trap partial or full dislocations. Cyclic loading simulations show that the periodic motion of the dislocations leads to …


Fast Diffusion Of Silver In Tio2 Nanotube Arrays, Wanggang Zhang, Yiming Liu, Diaoyu Zhou, Hui Wang, Wei Liang, Fuqian Yang Aug 2016

Fast Diffusion Of Silver In Tio2 Nanotube Arrays, Wanggang Zhang, Yiming Liu, Diaoyu Zhou, Hui Wang, Wei Liang, Fuqian Yang

Chemical and Materials Engineering Faculty Publications

Using magnetron sputtering and heat treatment, Ag@TiO2 nanotubes are prepared. The effects of heat-treatment temperature and heating time on the evolution of Ag nanofilms on the surface of TiO2 nanotubes and microstructure of Ag nanofilms are investigated by X-ray diffraction, field emission scanning electron microscopy, and transmission electron microscopy. Ag atoms migrate mainly on the outmost surface of the TiO2 nanotubes, and fast diffusion of Ag atoms is observed. The diffusivity for the diffusion of Ag atoms on the outmost surface of the TiO2 nanotubes at 400 °C is 6.87 × 10−18 m2/s, …


Studies On Nanocomposite Coating Produced By Laser-Assisted Process To Prevent Silicone Hydrogels From Bio-Fouling, Vishnuvardhana Wuppaladhodi Aug 2016

Studies On Nanocomposite Coating Produced By Laser-Assisted Process To Prevent Silicone Hydrogels From Bio-Fouling, Vishnuvardhana Wuppaladhodi

Electronic Thesis and Dissertation Repository

In this thesis, silver nanoparticles incorporated into polyvinylpyrrolidone (PVP) were deposited on silicone hydrogel to improve the hydrophilicity of the silicone hydrogel and prevent the growth of bacteria. Two different processes were employed to produce Ag nanoparticles: (1) Process-A is a photochemical reduction; (2) Process-B is laser ablation in liquid. Following that, MAPLE process was employed to deposit the Ag-PVP nanocomposites on the surface of silicone hydrogel. A solid-state pulsed laser (Nd:YAG) with a wavelength of 532 nm at a fluence of 50.4 mJ/cm2 was used in the MAPLE system to deposit Ag-PVP nanocomposite coating. Our results indicate that …


Lignin-Based Li-Ion Anode Materials Synthesized From Low-Cost Renewable Resources, Nicholas William Mcnutt Aug 2016

Lignin-Based Li-Ion Anode Materials Synthesized From Low-Cost Renewable Resources, Nicholas William Mcnutt

Doctoral Dissertations

In today’s world, the demand for novel methods of energy storage is increasing rapidly, particularly with the rise of portable electronic devices, electric vehicles, and the personal consumption and storage of solar energy. While other technologies have arguably improved at a rate that is exponential in accordance with Moore’s law, battery technology has lagged behind largely due to the difficulty in devising new electric storage systems that are simultaneously high performing, inexpensive, and safe.

In order to tackle these challenges, novel Li-ion battery anodes have been developed at Oak Ridge National Laboratory that are made from lignin, a low-cost, renewable …