Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Life Sciences

Phloem transport

Publication Year

Articles 1 - 4 of 4

Full-Text Articles in Nanoscience and Nanotechnology

Forisome Performance In Artificial Sieve Tubes, Michael Knoblauch, Mike Stubenrauch, Aart J.E. Van Bel, Winfried S. Peters Mar 2012

Forisome Performance In Artificial Sieve Tubes, Michael Knoblauch, Mike Stubenrauch, Aart J.E. Van Bel, Winfried S. Peters

Winfried S. Peters

In the legume phloem, sieve element occlusion (SEO) proteins assemble into Ca2+-dependent contractile bodies. These forisomes presumably control phloem transport by forming reversible sieve tube plugs. This function, however, has never been directly demonstrated, and appears questionable as forisomes were reported to be too small to plug sieve tubes, and failed to block flow efficiently in artificial microchannels. Moreover, plugs of SEO-related proteins in Arabidopsis sieve tubes do not affect phloem translocation. We improved existing procedures for forisome isolation and storage, and found that the degree of Ca2+-driven deformation that is possible in forisomes of Vicia faba, the standard …


Tailed Forisomes Of Canavalia Gladiata: A New Model To Study Ca2+-Driven Protein Contractility, Winfried Peters, Michael Knoblauch, Stephen Warmann, Reinhard Schnetter, Amy Shen, William Pickard Jun 2007

Tailed Forisomes Of Canavalia Gladiata: A New Model To Study Ca2+-Driven Protein Contractility, Winfried Peters, Michael Knoblauch, Stephen Warmann, Reinhard Schnetter, Amy Shen, William Pickard

Winfried S. Peters

Background and Aims Forisomes are Ca2+-dependent contractile protein bodies that form reversible plugs in sieve tubes of faboid legumes. Previous work employed Vicia faba forisomes, a not entirely unproblematic experimental system. The aim of this study was to seek to establish a superior model to study these intriguing actuators.
Methods Existing isolation procedures were modified to study the exceptionally large, tailed forisomes of Canavalia gladiata by differential interference contrast microscopy in vitro. To analyse contraction/expansion kinetics quantitatively, a geometric model was devised which enabled the computation of time-courses of derived parameters such as forisome volume from simple parameters readily determined …


Forisomes, A Novel Type Of Ca2+-Dependent Contractile Protein Motor [Review Article], Michael Knoblauch, Winfried Peters Apr 2004

Forisomes, A Novel Type Of Ca2+-Dependent Contractile Protein Motor [Review Article], Michael Knoblauch, Winfried Peters

Winfried S. Peters

This paper has no abstract; this is the first paragraph. Motility of cell components in both animal and plant cells is mostly based on the movement of motor proteins along actin filaments or microtubules [Boal, 2002]. The dominance of ATP hydrolysis as the energy source for such movements is so complete, that modern textbooks define “motor proteins” as nucleoside triphosphate-dependent actuators [e.g., Alberts et al., 2002]. In only one known case, a reversible mechanism of cell motility is driven by the interaction of Ca2+ and the responsive protein(s). Some sessile ciliates control the effective length of their stalk by means …


Atp-Independent Contractile Proteins From Plants, Michael Knoblauch, Gundula Noll, Torsten Müller, Dirk Prüfer, Ingrid Schneider-Hüther, Dörte Scharner, Aart Van Bel, Winfried Peters Aug 2003

Atp-Independent Contractile Proteins From Plants, Michael Knoblauch, Gundula Noll, Torsten Müller, Dirk Prüfer, Ingrid Schneider-Hüther, Dörte Scharner, Aart Van Bel, Winfried Peters

Winfried S. Peters

This paper has no abstract; this is the first paragraph. Emerging technologies are creating increasing interest in smart materials that may serve as actuators in micro- and nanodevices. Mechanically active polymers currently studied include a variety of materials. ATP-driven motor proteins, the actuators of living cells, possess promising characteristics, but their dependence on strictly defined chemical environments can be disadvantagous. Natural proteins that deform reversibly by entropic mechanisms might serve as models for artificial contractile polypeptides with useful functionality, but they are rare. Protein bodies from sieve elements of higher plants provide a novel example. sieve elements form microfluidics systems …