Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Nanoscience and Nanotechnology

Near-Infrared Surface-Enhanced Fluorescence Using Silver Nanoparticles In Solution, Michael D. Furtaw Dec 2013

Near-Infrared Surface-Enhanced Fluorescence Using Silver Nanoparticles In Solution, Michael D. Furtaw

Mechanical (and Materials) Engineering -- Dissertations, Theses, and Student Research

Fluorescence spectroscopy is a widely used detection technology in many research and clinical assays. Further improvement to assay sensitivity may enable earlier diagnosis of disease, novel biomarker discovery, and ultimately, improved outcomes of clinical care along with reduction in costs. Near-infrared, surface-enhanced fluorescence (NIR-SEF) is a promising approach to improve assay sensitivity via simultaneous increase in signal with a reduction in background. This dissertation describes research conducted with the overall goal to determine the extent to which fluorescence in solution may be enhanced by altering specific variables involved in the formation of plasmonactive nanostructures of dye-labeled protein and silver nanoparticles ...


Design And Fabrication Of Nanofluidic Systems With Integrated Sensing Electrodes For Rapid Biomolecule Characterization, Taylor Bradley Busch May 2013

Design And Fabrication Of Nanofluidic Systems With Integrated Sensing Electrodes For Rapid Biomolecule Characterization, Taylor Bradley Busch

Theses and Dissertations

A transparent nanofluidic system with embedded sensing electrodes was designed and fabricated by integrating Atomic Force Microscopy (AFM) nanolithography, Focused Ion Beam (FIB) milling and metal deposition, and standard microfabrication processing. The fabrication process started with the evaporation of chrome/gold (Cr/Au) onto a Pyrex 7740 wafer followed by photolithography and wet etching of the microchannels. The wafer was patterned a second time to form Au microelectrodes with 15-45 micrometer separation gaps in the nanochannel region. Sensing electrodes (up to one micron wide) were then deposited using FIB to bridge the gaps. The nanochannels were realized through both AFM ...