Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Nanoscience and Nanotechnology

Modeling Multiphase Flow And Substrate Deformation In Nanoimprint Manufacturing Systems, Andrew Cochrane Apr 2019

Modeling Multiphase Flow And Substrate Deformation In Nanoimprint Manufacturing Systems, Andrew Cochrane

Nanoscience and Microsystems ETDs

Nanopatterns found in nature demonstrate that macroscopic properties of a surface are tied to its nano-scale structure. Tailoring the nanostructure allows those macroscopic surface properties to be engineered. However, a capability-gap in manufacturing technology inhibits mass-production of nanotechnologies based on simple, nanometer-scale surface patterns. This gap represents an opportunity for research and development of nanoimprint lithography (NIL) processes. NIL is a process for replicating patterns by imprinting a fluid layer with a solid, nano-patterned template, after which ultraviolet cure solidifies the fluid resulting in a nano-patterned surface. Although NIL has been demonstrated to replicate pattern features as small as 4 ...


Swelling As A Stabilizing Mechanism During Ion Bombardment Of Thin Films: An Analytical And Numerical Study, Jennifer M. Swenson Apr 2018

Swelling As A Stabilizing Mechanism During Ion Bombardment Of Thin Films: An Analytical And Numerical Study, Jennifer M. Swenson

Mathematics Theses and Dissertations

Irradiation of semiconductor surfaces often leads to the spontaneous formation of rippled structures at certain irradiation angles. However, at high enough energies, these structures are observed to vanish for all angles, despite the absence of any identified, universally-stabilizing physical mechanisms in operation. Here, we examine the effect on pattern formation of radiation-induced swelling, which has been excluded from prior treatments of stress in irradiated films. After developing a suitable continuum model, we perform a linear stability analysis to determine its effect on stability. Under appropriate simplifying assumptions, we find swelling indeed to be stabilizing at wavenumbers typical of experimental observations ...


An Assessment Of The Validity Of The Kinetic Model For Liquid-Vapor Phase Change By Examining Cryogenic Propellants, Kishan Bellur Jan 2016

An Assessment Of The Validity Of The Kinetic Model For Liquid-Vapor Phase Change By Examining Cryogenic Propellants, Kishan Bellur

Dissertations, Master's Theses and Master's Reports

Evaporation is ubiquitous in nature and occurs even in a microgravity space envi- ronment. Long term space missions require storage of cryogenic propellents and an accurate prediction of phase change rates. Kinetic theory has been used to model and predict evaporation rates for over a century but the reported values of accommodation coefficients are highly inconsistent and no accurate data is available for cryogens. The proposed study involves a combined experimental and computational approach to ex- tract the accommodation coefficients. Neutron imaging is used as the visualization technique due to the difference in attenuation between the cryogen and the metallic ...


Design And Fabrication Of Nanofluidic Systems With Integrated Sensing Electrodes For Rapid Biomolecule Characterization, Taylor Bradley Busch May 2013

Design And Fabrication Of Nanofluidic Systems With Integrated Sensing Electrodes For Rapid Biomolecule Characterization, Taylor Bradley Busch

Theses and Dissertations

A transparent nanofluidic system with embedded sensing electrodes was designed and fabricated by integrating Atomic Force Microscopy (AFM) nanolithography, Focused Ion Beam (FIB) milling and metal deposition, and standard microfabrication processing. The fabrication process started with the evaporation of chrome/gold (Cr/Au) onto a Pyrex 7740 wafer followed by photolithography and wet etching of the microchannels. The wafer was patterned a second time to form Au microelectrodes with 15-45 micrometer separation gaps in the nanochannel region. Sensing electrodes (up to one micron wide) were then deposited using FIB to bridge the gaps. The nanochannels were realized through both AFM ...


The Nanoaquarium: A Nanofluidic Platform For In Situ Transmission Electron Microscopy In Liquid Media, Joseph M. Grogan Dec 2011

The Nanoaquarium: A Nanofluidic Platform For In Situ Transmission Electron Microscopy In Liquid Media, Joseph M. Grogan

Publicly Accessible Penn Dissertations

There are many scientifically interesting and technologically relevant nanoscale phenomena that take place in liquid media. Examples include aggregation and assembly of nanoparticles; colloidal crystal formation; liquid phase growth of structures such as nanowires; electrochemical deposition and etching for fabrication processes and battery applications; interfacial phenomena; boiling and cavitation; and biological interactions. Understanding of these fields would benefit greatly from real-time, in situ transmission electron microscope (TEM) imaging with nanoscale resolution. Most liquids cannot be imaged by traditional TEM due to evaporation in the high vacuum environment and the requirement that samples be very thin. Liquid-cell in situ TEM has ...