Open Access. Powered by Scholars. Published by Universities.^{®}
Nanoscience and Nanotechnology Commons^{™}
Open Access. Powered by Scholars. Published by Universities.^{®}
 Institution
 Keyword

 Selected recent publications (13)
 Electrospinning (5)
 Presentations (4)
 Electrophoresis (3)
 Mathematical Modeling (3)

 Selfassembly (3)
 Theory and models of film growth (3)
 Morphology of films (3)
 Dewetting (2)
 Pulsed laser irradiation (2)
 Thermocapillary convection (2)
 Microfluidics (2)
 Selforganization (2)
 Particle size (2)
 Liquid bilayer films (2)
 Nanofluidics (2)
 BioMEMS (2)
 Interfacial stabil ity (2)
 Electrodes (2)
 Nanopatterning (2)
 Biological fluid dynamics (1)
 Biological techniques (1)
 Biomolecule characterization (1)
 Applied sciences (1)
 Aggregation (1)
 Auxiliary Electric Fields (1)
 Bacterial spores (1)
 Accommodation coefficient (1)
 Bioelectric phenomena (1)
 Bacteria (1)
 Publication Year
 Publication
 Publication Type
Articles 31  50 of 50
FullText Articles in Nanoscience and Nanotechnology
Thermocapillary Effects In Driven Dewetting And SelfAssembly Of Pulsed LaserIrradiated Metallic Films, Mikhail Khenner
Thermocapillary Effects In Driven Dewetting And SelfAssembly Of Pulsed LaserIrradiated Metallic Films, Mikhail Khenner
Mathematics Faculty Publications
A mathematical model for the evolution of pulsed laserirradiated, molten metallic films has been developed using the lubrication theory. The heat transfer problem that incorporates the absorbed heat from a single laser beam or the interfering laser beams is solved analytically. Using this temperature field, we derive the 3D longwave evolution PDE for the film height. To get insights into dynamics of dewetting, we study the 2D version of the evolution equation by means of a linear stability analysis and by numerical simulations. The stabilizing and destabilizing effects of various system parameters, such as the reflectivity, the peak laser beam ...
Thermocapillary Effects In Driven Dewetting And SelfAssembly Of Pulsed LaserIrradiated Metallic Films, Mikhail Khenner
Thermocapillary Effects In Driven Dewetting And SelfAssembly Of Pulsed LaserIrradiated Metallic Films, Mikhail Khenner
Mathematics Faculty Publications
A mathematical model for the evolution of pulsed laserirradiated, molten metallic films has been developed using the lubrication theory. The heat transfer problem that incorporates the absorbed heat from a single laser beam or the interfering laser beams is solved analytically. Using this temperature field, we derive the 3D longwave evolution PDE for the film height. To get insights into dynamics of dewetting, we study the 2D version of the evolution equation by means of a linear stability analysis and by numerical simulations. The stabilizing and destabilizing effects of various system parameters, such as the reflectivity, the peak laser beam ...
Thermocapillary Effects In Driven Dewetting And SelfAssembly Of Pulsed LaserIrradiated Metallic Films, Mikhail Khenner
Thermocapillary Effects In Driven Dewetting And SelfAssembly Of Pulsed LaserIrradiated Metallic Films, Mikhail Khenner
Mathematics Faculty Publications
A mathematical model for the evolution of pulsed laserirradiated, molten metallic films has been developed using the lubrication theory. The heat transfer problem that incorporates the absorbed heat from a single laser beam or the interfering laser beams is solved analytically. Using this temperature field, we derive the 3D longwave evolution PDE for the film height. To get insights into dynamics of dewetting, we study the 2D version of the evolution equation by means of a linear stability analysis and by numerical simulations. The stabilizing and destabilizing effects of various system parameters, such as the reflectivity, the peak laser beam ...
Effect Of Salts On The Electrospinning Of Poly(Vinyl Alcohol), Jonathan J. Stanger, Nick Tucker, Mark P. Staiger, Kerry Kirwan, Stuart Coles, Daniel Jacobs, Nigel Larsen
Effect Of Salts On The Electrospinning Of Poly(Vinyl Alcohol), Jonathan J. Stanger, Nick Tucker, Mark P. Staiger, Kerry Kirwan, Stuart Coles, Daniel Jacobs, Nigel Larsen
Jonathan J Stanger
Fibres with a diameter in the nanometer range were electrospun from aqueous poly(vinyl alcohol) (PVOH). In order to improve the mass deposition rate and decrease the final fibre diameter salts (NaCl, LiCl, LiBr and LiF) were added to the solution. The aim was to increase the charge density and hence increase the electrostatic forces on the fluid. It was found that with increasing salt concentration the charge density did increase. However the mass deposition rate was found to decrease and the final fibre diameter was found to increase. The decrease in mass deposition rate is explained by considering the ...
Effect Of Charge Density On The Taylor Cone In Electrospinning, Jonathan J. Stanger, Nick Tucker, Kerry Kirwan, Stuart Coles, Daniel Jacobs, Mark P. Staiger
Effect Of Charge Density On The Taylor Cone In Electrospinning, Jonathan J. Stanger, Nick Tucker, Kerry Kirwan, Stuart Coles, Daniel Jacobs, Mark P. Staiger
Jonathan J Stanger
A detailed understanding of charge density and its origins during the electrospinning process is desirable for developing new electrospinnable polymersolvent systems and ensuring mathematical models of the process are accurate. In this work, two different approaches were taken to alter the charge density in order to measure its effect on the Taylor cone, mass deposition rate and initial jet diameter. It was found that an increase in charge density results in a decrease in the mass deposition rate and initial jet diameter. A theory is proposed for this behaviour in that an increase in charge density leads to the tip ...
The Effect Of Electrode Configuration And Substrate Material On The Mass Deposition Rate Of Electrospinning, Jonathan J. Stanger, Nick Tucker, Andrew Wallace, Nigel Larsen, Mark P. Staiger, Roger Reeves
The Effect Of Electrode Configuration And Substrate Material On The Mass Deposition Rate Of Electrospinning, Jonathan J. Stanger, Nick Tucker, Andrew Wallace, Nigel Larsen, Mark P. Staiger, Roger Reeves
Jonathan J Stanger
Poly(vinyl alcohol) (PVOH) was electrospun using different methods to charge the polymer solution. A positive high voltage relative to the collecting electrode significantly increased the fibre deposition rate. Electron microscopy showed that approximately half of the increase in fibre mass was due to thicker fibres being deposited. The current flowing from the grounded electrode was measured to determine the charge carried on the PVOH jet. This showed that for a positive voltage charging condition there is a much larger current and hence more charge carriers generated in the PVOH solution. As a result, more mass is ejected from the ...
Thermocapillary Effects In Driven Dewetting And SelfAssembly Of Pulsed LaserIrradiated Metallic Films, Agegnehu Atena, Mikhail Khenner
Thermocapillary Effects In Driven Dewetting And SelfAssembly Of Pulsed LaserIrradiated Metallic Films, Agegnehu Atena, Mikhail Khenner
Mikhail Khenner
In this paper the lubricationtype dynamical model is developed of a molten, pulsed laserirradiated metallic film. The heat transfer problem that incorporates the absorbed heat from a single beam or interfering beams is solved analytically. Using this temperature field, we derive the 3D longwave evolution PDE for the film height. To get insights into dynamics of dewetting, we study the 2D version of the evolution equation by means of a linear stability analysis and by numerical simulations. The stabilizing and destabilizing effects of various system parameters, such as the peak laser beam intensity, the film optical thickness, the Biot and ...
Thermocapillary Effects In Driven Dewetting And SelfAssembly Of Pulsed LaserIrradiated Metallic Films, Agegnehu Atena, Mikhail Khenner
Thermocapillary Effects In Driven Dewetting And SelfAssembly Of Pulsed LaserIrradiated Metallic Films, Agegnehu Atena, Mikhail Khenner
Mathematics Faculty Publications
In this paper the lubricationtype dynamical model is developed of a molten, pulsed laserirradiated metallic film. The heat transfer problem that incorporates the absorbed heat from a single beam or interfering beams is solved analytically. Using this temperature field, we derive the 3D longwave evolution PDE for the film height. To get insights into dynamics of dewetting, we study the 2D version of the evolution equation by means of a linear stability analysis and by numerical simulations. The stabilizing and destabilizing effects of various system parameters, such as the peak laser beam intensity, the film optical thickness, the Biot and ...
Thermocapillary Effects In Driven Dewetting And SelfAssembly Of Pulsed LaserIrradiated Metallic Films, Agegnehu Atena, Mikhail Khenner
Thermocapillary Effects In Driven Dewetting And SelfAssembly Of Pulsed LaserIrradiated Metallic Films, Agegnehu Atena, Mikhail Khenner
Mathematics Faculty Publications
In this paper the lubricationtype dynamical model is developed of a molten, pulsed laserirradiated metallic film. The heat transfer problem that incorporates the absorbed heat from a single beam or interfering beams is solved analytically. Using this temperature field, we derive the 3D longwave evolution PDE for the film height. To get insights into dynamics of dewetting, we study the 2D version of the evolution equation by means of a linear stability analysis and by numerical simulations. The stabilizing and destabilizing effects of various system parameters, such as the peak laser beam intensity, the film optical thickness, the Biot and ...
PressureDriven Transport Of Particles Through A ConvergingDiverging Microchannel, Ye Ai, Sang W. Joo, Xiangchun Xuan, Shizhi Qian
PressureDriven Transport Of Particles Through A ConvergingDiverging Microchannel, Ye Ai, Sang W. Joo, Xiangchun Xuan, Shizhi Qian
Mechanical & Aerospace Engineering Faculty Publications
Pressuredriven transport of particles through a symmetric convergingdiverging microchannel is studied by solving a coupled nonlinear system, which is composed of the NavierStokes and continuity equations using the arbitrary LagrangianEulerian finiteelement technique. The predicted particle translation is in good agreement with existing experimental observations. The effects of pressure gradient, particle size, channel geometry, and a particle's initial location on the particle transport are investigated. The pressure gradient has no effect on the ratio of the translational velocity of particles through a convergingdiverging channel to that in the upstream straight channel. Particles are generally accelerated in the converging region and ...
Research On The Transport And Deposition Of Nanoparticles In A Rotating Curved Pipe, Jianzhong Lin, Peifeng Lin, Huajun Chen
Research On The Transport And Deposition Of Nanoparticles In A Rotating Curved Pipe, Jianzhong Lin, Peifeng Lin, Huajun Chen
Mechanical Engineering Faculty Publications
A finitevolume code and the SIMPLE scheme are used to study the transport and deposition of nanoparticles in a rotating curved pipe for different angular velocities, Dean numbers, and Schmidt numbers. The results show that when the Schmidt number is small, the nanoparticle distributions are mostly determined by the axial velocity. When the Schmidt number is many orders of magnitude larger than 1, the secondary flow will dominate the nanoparticle distribution. When the pipe corotates, the distribution of nanoparticle mass fraction is similar to that for the stationary case. There is a “hot spot” deposition region near the outside edge ...
Charge Transfer Mechanisms In Electrospinning, Jonathan J. Stanger
Charge Transfer Mechanisms In Electrospinning, Jonathan J. Stanger
Jonathan J Stanger
Electrospinning is a method of producing nano structured material from a polymer solution or melt using high strength electric fields. It is a process that has yet to find extensive industrial application yet shows promise if obstacles such as low rate of production overcome perhaps by more complete theoretical modelling. This work examines the effects of adding an ionic salt to a solution of poly(vinyl alcohol) in water. The direct effect was an increase the charge density and electric current. It was found that an increase in charge density decreases the mass deposition rate and forms a thinner initial ...
Morphologies And Kinetics Of A Dewetting Ultrathin Solid Film, Mikhail Khenner
Morphologies And Kinetics Of A Dewetting Ultrathin Solid Film, Mikhail Khenner
Mathematics Faculty Publications
The surface evolution model based on geometric partial differential equation is used to numerically study the kinetics of dewetting and dynamic morphologies for the localized pinhole defect in the surface of the ultrathin solid film with the strongly anisotropic surface energy. Depending on parameters such as the initial depth and width of the pinole, the strength of the attractive substrate potential and the strength of the surface energy anisotropy, the pinhole may either extend to the substrate and thus rupture the film, or evolve to the quasiequilibrium shape while the rest of the film surface undergoes phase separation into a ...
Morphologies And Kinetics Of A Dewetting Ultrathin Solid Film, Mikhail Khenner
Morphologies And Kinetics Of A Dewetting Ultrathin Solid Film, Mikhail Khenner
Mikhail Khenner
The surface evolution model based on geometric partial differential equation is used to numerically study the kinetics of dewetting and dynamic morphologies for the localized pinhole defect in the surface of the ultrathin solid film with the strongly anisotropic surface energy. Depending on parameters such as the initial depth and width of the pinole, the strength of the attractive substrate potential and the strength of the surface energy anisotropy, the pinhole may either extend to the substrate and thus rupture the film, or evolve to the quasiequilibrium shape while the rest of the film surface undergoes phase separation into a ...
Enhanced Stability Of A Dewetting Thin Liquid Film In A SingleFrequency Vibration Field, Sergey Shklyaev, Mikhail Khenner, Alexei Alabuzhev
Enhanced Stability Of A Dewetting Thin Liquid Film In A SingleFrequency Vibration Field, Sergey Shklyaev, Mikhail Khenner, Alexei Alabuzhev
Mikhail Khenner
Dynamics of a thin dewetting liquid film on a vertically oscillating substrate is considered. We assume moderate vibration frequency and large (compared to the mean film thickness) vibration amplitude. Using the lubrication approximation and the averaging method, we formulate the coupled sets of equations governing the pulsatile and the averaged fluid flows in the film, and then derive the nonlinear amplitude equation for the averaged film thickness. We show that there exists a window in the frequencyamplitude domain where the parametric and shearflow instabilities of the pulsatile flow do not emerge. As a consequence, in this window the averaged description ...
Morphologies And Kinetics Of A Dewetting Ultrathin Solid Film, Mikhail Khenner
Morphologies And Kinetics Of A Dewetting Ultrathin Solid Film, Mikhail Khenner
Mathematics Faculty Publications
The surface evolution model based on geometric partial differential equation is used to numerically study the kinetics of dewetting and dynamic morphologies for the localized pinhole defect in the surface of the ultrathin solid film with the strongly anisotropic surface energy. Depending on parameters such as the initial depth and width of the pinole, the strength of the attractive substrate potential and the strength of the surface energy anisotropy, the pinhole may either extend to the substrate and thus rupture the film, or evolve to the quasiequilibrium shape while the rest of the film surface undergoes phase separation into a ...
Enhanced Stability Of A Dewetting Thin Liquid Film In A SingleFrequency Vibration Field, Sergey Shklyaev, Mikhail Khenner, Alexei Alabuzhev
Enhanced Stability Of A Dewetting Thin Liquid Film In A SingleFrequency Vibration Field, Sergey Shklyaev, Mikhail Khenner, Alexei Alabuzhev
Mathematics Faculty Publications
Dynamics of a thin dewetting liquid film on a vertically oscillating substrate is considered. We assume moderate vibration frequency and large (compared to the mean film thickness) vibration amplitude. Using the lubrication approximation and the averaging method, we formulate the coupled sets of equations governing the pulsatile and the averaged fluid flows in the film, and then derive the nonlinear amplitude equation for the averaged film thickness. We show that there exists a window in the frequencyamplitude domain where the parametric and shearflow instabilities of the pulsatile flow do not emerge. As a consequence, in this window the averaged description ...
Enhanced Stability Of A Dewetting Thin Liquid Film In A SingleFrequency Vibration Field, Mikhail Khenner
Enhanced Stability Of A Dewetting Thin Liquid Film In A SingleFrequency Vibration Field, Mikhail Khenner
Mathematics Faculty Publications
Dynamics of a thin dewetting liquid film on a vertically oscillating substrate is considered. We assume moderate vibration frequency and large (compared to the mean film thickness) vibration amplitude. Using the lubrication approximation and the averaging method, we formulate the coupled sets of equations governing the pulsatile and the averaged fluid flows in the film, and then derive the nonlinear amplitude equation for the averaged film thickness. We show that there exists a window in the frequencyamplitude domain where the parametric and shearflow instabilities of the pulsatile flow do not emerge. As a consequence, in this window the averaged description ...
Enhanced Stability Of A Dewetting Thin Liquid Film In A SingleFrequency Vibration Field, Sergey Shklyaev, Mikhail Khenner, Alexei Alabuzhev
Enhanced Stability Of A Dewetting Thin Liquid Film In A SingleFrequency Vibration Field, Sergey Shklyaev, Mikhail Khenner, Alexei Alabuzhev
Mathematics Faculty Publications
Dynamics of a thin dewetting liquid film on a vertically oscillating substrate is considered. We assume moderate vibration frequency and large (compared to the mean film thickness) vibration amplitude. Using the lubrication approximation and the averaging method, we formulate the coupled sets of equations governing the pulsatile and the averaged fluid flows in the film, and then derive the nonlinear amplitude equation for the averaged film thickness. We show that there exists a window in the frequencyamplitude domain where the parametric and shearflow instabilities of the pulsatile flow do not emerge. As a consequence, in this window the averaged description ...
Modeling RedoxBased Magnetohydrodynamics In ThreeDimensional Microfluidic Channels, Hussameddine S. Kabbani, Aihua Wang, Xiaobing Luo, Shizhi Qian
Modeling RedoxBased Magnetohydrodynamics In ThreeDimensional Microfluidic Channels, Hussameddine S. Kabbani, Aihua Wang, Xiaobing Luo, Shizhi Qian
Mechanical Engineering Faculty Publications
RedOxbased magnetohydrodynamic MHD[1] flows in threedimensional microfluidic channels are investigated theoretically with a coupled mathematical model consisting of the NernstPlanck equations for the concentrations of ionic species, the local electroneutrality condition for the electric potential, and the NavierStokes equations for the flow field. A potential difference is externally applied across two planar electrodes positioned along the opposing walls of a microchannel that is filled with a dilute RedOx electrolyte solution, and a Faradaic current transmitted through the solution results. The entire device is positioned under a magnetic field which can be provided by either a permanent magnet or an ...