Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 12 of 12

Full-Text Articles in Nanoscience and Nanotechnology

Thermocapillary Effects In Driven Dewetting And Self-Assembly Of Pulsed Laser-Irradiated Metallic Films, Mikhail Khenner Dec 2009

Thermocapillary Effects In Driven Dewetting And Self-Assembly Of Pulsed Laser-Irradiated Metallic Films, Mikhail Khenner

Mikhail Khenner

A mathematical model for the evolution of pulsed laser-irradiated, molten metallic films has been developed using the lubrication theory. The heat transfer problem that incorporates the absorbed heat from a single laser beam or the interfering laser beams is solved analytically. Using this temperature field, we derive the 3D long-wave evolution PDE for the film height. To get insights into dynamics of dewetting, we study the 2D version of the evolution equation by means of a linear stability analysis and by numerical simulations. The stabilizing and destabilizing effects of various system parameters, such as the reflectivity, the peak laser beam ...


Thermocapillary Effects In Driven Dewetting And Self-Assembly Of Pulsed Laser-Irradiated Metallic Films, Mikhail Khenner Dec 2009

Thermocapillary Effects In Driven Dewetting And Self-Assembly Of Pulsed Laser-Irradiated Metallic Films, Mikhail Khenner

Mathematics Faculty Publications

A mathematical model for the evolution of pulsed laser-irradiated, molten metallic films has been developed using the lubrication theory. The heat transfer problem that incorporates the absorbed heat from a single laser beam or the interfering laser beams is solved analytically. Using this temperature field, we derive the 3D long-wave evolution PDE for the film height. To get insights into dynamics of dewetting, we study the 2D version of the evolution equation by means of a linear stability analysis and by numerical simulations. The stabilizing and destabilizing effects of various system parameters, such as the reflectivity, the peak laser beam ...


Thermocapillary Effects In Driven Dewetting And Self-Assembly Of Pulsed Laser-Irradiated Metallic Films, Mikhail Khenner Dec 2009

Thermocapillary Effects In Driven Dewetting And Self-Assembly Of Pulsed Laser-Irradiated Metallic Films, Mikhail Khenner

Mathematics Faculty Publications

A mathematical model for the evolution of pulsed laser-irradiated, molten metallic films has been developed using the lubrication theory. The heat transfer problem that incorporates the absorbed heat from a single laser beam or the interfering laser beams is solved analytically. Using this temperature field, we derive the 3D long-wave evolution PDE for the film height. To get insights into dynamics of dewetting, we study the 2D version of the evolution equation by means of a linear stability analysis and by numerical simulations. The stabilizing and destabilizing effects of various system parameters, such as the reflectivity, the peak laser beam ...


Thermocapillary Effects In Driven Dewetting And Self-Assembly Of Pulsed Laser-Irradiated Metallic Films, Mikhail Khenner Dec 2009

Thermocapillary Effects In Driven Dewetting And Self-Assembly Of Pulsed Laser-Irradiated Metallic Films, Mikhail Khenner

Mathematics Faculty Publications

A mathematical model for the evolution of pulsed laser-irradiated, molten metallic films has been developed using the lubrication theory. The heat transfer problem that incorporates the absorbed heat from a single laser beam or the interfering laser beams is solved analytically. Using this temperature field, we derive the 3D long-wave evolution PDE for the film height. To get insights into dynamics of dewetting, we study the 2D version of the evolution equation by means of a linear stability analysis and by numerical simulations. The stabilizing and destabilizing effects of various system parameters, such as the reflectivity, the peak laser beam ...


Effect Of Salts On The Electrospinning Of Poly(Vinyl Alcohol), Jonathan J. Stanger, Nick Tucker, Mark P. Staiger, Kerry Kirwan, Stuart Coles, Daniel Jacobs, Nigel Larsen Jan 2009

Effect Of Salts On The Electrospinning Of Poly(Vinyl Alcohol), Jonathan J. Stanger, Nick Tucker, Mark P. Staiger, Kerry Kirwan, Stuart Coles, Daniel Jacobs, Nigel Larsen

Jonathan J Stanger

Fibres with a diameter in the nanometer range were electrospun from aqueous poly(vinyl alcohol) (PVOH). In order to improve the mass deposition rate and decrease the final fibre diameter salts (NaCl, LiCl, LiBr and LiF) were added to the solution. The aim was to increase the charge density and hence increase the electrostatic forces on the fluid. It was found that with increasing salt concentration the charge density did increase. However the mass deposition rate was found to decrease and the final fibre diameter was found to increase. The decrease in mass deposition rate is explained by considering the ...


Effect Of Charge Density On The Taylor Cone In Electrospinning, Jonathan J. Stanger, Nick Tucker, Kerry Kirwan, Stuart Coles, Daniel Jacobs, Mark P. Staiger Jan 2009

Effect Of Charge Density On The Taylor Cone In Electrospinning, Jonathan J. Stanger, Nick Tucker, Kerry Kirwan, Stuart Coles, Daniel Jacobs, Mark P. Staiger

Jonathan J Stanger

A detailed understanding of charge density and its origins during the electrospinning process is desirable for developing new electrospinnable polymer-solvent systems and ensuring mathematical models of the process are accurate. In this work, two different approaches were taken to alter the charge density in order to measure its effect on the Taylor cone, mass deposition rate and initial jet diameter. It was found that an increase in charge density results in a decrease in the mass deposition rate and initial jet diameter. A theory is proposed for this behaviour in that an increase in charge density leads to the tip ...


The Effect Of Electrode Configuration And Substrate Material On The Mass Deposition Rate Of Electrospinning, Jonathan J. Stanger, Nick Tucker, Andrew Wallace, Nigel Larsen, Mark P. Staiger, Roger Reeves Jan 2009

The Effect Of Electrode Configuration And Substrate Material On The Mass Deposition Rate Of Electrospinning, Jonathan J. Stanger, Nick Tucker, Andrew Wallace, Nigel Larsen, Mark P. Staiger, Roger Reeves

Jonathan J Stanger

Poly(vinyl alcohol) (PVOH) was electrospun using different methods to charge the polymer solution. A positive high voltage relative to the collecting electrode significantly increased the fibre deposition rate. Electron microscopy showed that approximately half of the increase in fibre mass was due to thicker fibres being deposited. The current flowing from the grounded electrode was measured to determine the charge carried on the PVOH jet. This showed that for a positive voltage charging condition there is a much larger current and hence more charge carriers generated in the PVOH solution. As a result, more mass is ejected from the ...


Thermocapillary Effects In Driven Dewetting And Self-Assembly Of Pulsed Laser-Irradiated Metallic Films, Agegnehu Atena, Mikhail Khenner Jan 2009

Thermocapillary Effects In Driven Dewetting And Self-Assembly Of Pulsed Laser-Irradiated Metallic Films, Agegnehu Atena, Mikhail Khenner

Mikhail Khenner

In this paper the lubrication-type dynamical model is developed of a molten, pulsed laser-irradiated metallic film. The heat transfer problem that incorporates the absorbed heat from a single beam or interfering beams is solved analytically. Using this temperature field, we derive the 3D long-wave evolution PDE for the film height. To get insights into dynamics of dewetting, we study the 2D version of the evolution equation by means of a linear stability analysis and by numerical simulations. The stabilizing and destabilizing effects of various system parameters, such as the peak laser beam intensity, the film optical thickness, the Biot and ...


Thermocapillary Effects In Driven Dewetting And Self-Assembly Of Pulsed Laser-Irradiated Metallic Films, Agegnehu Atena, Mikhail Khenner Jan 2009

Thermocapillary Effects In Driven Dewetting And Self-Assembly Of Pulsed Laser-Irradiated Metallic Films, Agegnehu Atena, Mikhail Khenner

Mathematics Faculty Publications

In this paper the lubrication-type dynamical model is developed of a molten, pulsed laser-irradiated metallic film. The heat transfer problem that incorporates the absorbed heat from a single beam or interfering beams is solved analytically. Using this temperature field, we derive the 3D long-wave evolution PDE for the film height. To get insights into dynamics of dewetting, we study the 2D version of the evolution equation by means of a linear stability analysis and by numerical simulations. The stabilizing and destabilizing effects of various system parameters, such as the peak laser beam intensity, the film optical thickness, the Biot and ...


Thermocapillary Effects In Driven Dewetting And Self-Assembly Of Pulsed Laser-Irradiated Metallic Films, Agegnehu Atena, Mikhail Khenner Jan 2009

Thermocapillary Effects In Driven Dewetting And Self-Assembly Of Pulsed Laser-Irradiated Metallic Films, Agegnehu Atena, Mikhail Khenner

Mathematics Faculty Publications

In this paper the lubrication-type dynamical model is developed of a molten, pulsed laser-irradiated metallic film. The heat transfer problem that incorporates the absorbed heat from a single beam or interfering beams is solved analytically. Using this temperature field, we derive the 3D long-wave evolution PDE for the film height. To get insights into dynamics of dewetting, we study the 2D version of the evolution equation by means of a linear stability analysis and by numerical simulations. The stabilizing and destabilizing effects of various system parameters, such as the peak laser beam intensity, the film optical thickness, the Biot and ...


Pressure-Driven Transport Of Particles Through A Converging-Diverging Microchannel, Ye Ai, Sang W. Joo, Xiangchun Xuan, Shizhi Qian Jan 2009

Pressure-Driven Transport Of Particles Through A Converging-Diverging Microchannel, Ye Ai, Sang W. Joo, Xiangchun Xuan, Shizhi Qian

Mechanical & Aerospace Engineering Faculty Publications

Pressure-driven transport of particles through a symmetric converging-diverging microchannel is studied by solving a coupled nonlinear system, which is composed of the Navier-Stokes and continuity equations using the arbitrary Lagrangian-Eulerian finite-element technique. The predicted particle translation is in good agreement with existing experimental observations. The effects of pressure gradient, particle size, channel geometry, and a particle's initial location on the particle transport are investigated. The pressure gradient has no effect on the ratio of the translational velocity of particles through a converging-diverging channel to that in the upstream straight channel. Particles are generally accelerated in the converging region and ...


Research On The Transport And Deposition Of Nanoparticles In A Rotating Curved Pipe, Jianzhong Lin, Peifeng Lin, Huajun Chen Jan 2009

Research On The Transport And Deposition Of Nanoparticles In A Rotating Curved Pipe, Jianzhong Lin, Peifeng Lin, Huajun Chen

Mechanical Engineering Faculty Publications

A finite-volume code and the SIMPLE scheme are used to study the transport and deposition of nanoparticles in a rotating curved pipe for different angular velocities, Dean numbers, and Schmidt numbers. The results show that when the Schmidt number is small, the nanoparticle distributions are mostly determined by the axial velocity. When the Schmidt number is many orders of magnitude larger than 1, the secondary flow will dominate the nanoparticle distribution. When the pipe corotates, the distribution of nanoparticle mass fraction is similar to that for the stationary case. There is a “hot spot” deposition region near the outside edge ...