Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Environmental Sciences

Institution
Keyword
Publication Year
Publication
Publication Type

Articles 1 - 30 of 51

Full-Text Articles in Nanoscience and Nanotechnology

From Waste To Energy: The Electrochemical Reduction Of Co2 Using Recycled Nanostructured Catalysts, Ibrahim Badawy Jul 2023

From Waste To Energy: The Electrochemical Reduction Of Co2 Using Recycled Nanostructured Catalysts, Ibrahim Badawy

Theses and Dissertations

The reduction of carbon dioxide (CO2RR) using electrochemistry is a promising solution for the burgeoning global energy crisis. The overall vision of its implementation relies on renewable energy sources to power the reaction creating carbon neutral products and effectively closing the carbon cycle. Research in this field has come a long way since its inception in the mid-1900s. However, there remain significant hurdles and important considerations to overcome in order to reach full commercialization. Most electrocatalysts tested for CO2RR have been designed solely for maximum performance while ignoring the environmental consequences if such a material were …


Fabrication And Characterization Of Iron-Based Catalysts For The Dehydrogenation Of Fossil Fuels, Victoria Isabel Reyes Dec 2022

Fabrication And Characterization Of Iron-Based Catalysts For The Dehydrogenation Of Fossil Fuels, Victoria Isabel Reyes

Open Access Theses & Dissertations

For a prosperous and sustainable future, hydrogen is an encouraging solution due to its simple transition for industrial decarbonization and synergy for economic development. Paradoxically, current hydrogen production pathways release substantial amount of greenhouse gases into the atmosphere contributing to climate change. To keep up with increasing demand, hydrogen could be produced through microwave-assisted thermocatalytic dehydrogenation of fossil fuels without emitting carbon dioxide. This requires specified catalysts to meet the requirements of hydrogen yield and selectivity. The objective of the present research is to fabricate, characterize, and compare iron-based alumina (FeAl_x O_y) catalysts produced via solution combustion synthesis and iron-based …


Photocatalytic Degradation Of Organic Contaminants By Titania Particles Produced By Flame Spray Pyrolysis, Noah Babik May 2022

Photocatalytic Degradation Of Organic Contaminants By Titania Particles Produced By Flame Spray Pyrolysis, Noah Babik

Theses and Dissertations

Advanced oxidation of organic pollutants with TiO2 photocatalysts is limited due to the wide bandgap of TiO2, 3.2 eV, which requires ultraviolet (UV) radiation. When nanosized TiO2 is modified by carbon doping, charge recombination is inhibited and the bandgap is narrowed, allowing for efficient photodegradation under visible light. Here, we propose a flame spray pyrolysis (FSP) technique to create TiO2. The facile process of FSP has been successful in preparing highly crystalline TiO2 nanoparticles. Using the same procedure to deposit TiO2 onto biochar, the photocatalyst was doped by the carbonaceous material. The morphology, crystalline and electronic structure of the FSP …


Degradation Of Antibiotics In Aqueous Phase Using Pms Catalytic Decomposition With Zero-Valent Iron Nanoparticles Immobilized In Sba-15, Ahdee Bluma Zeidman May 2021

Degradation Of Antibiotics In Aqueous Phase Using Pms Catalytic Decomposition With Zero-Valent Iron Nanoparticles Immobilized In Sba-15, Ahdee Bluma Zeidman

UNLV Theses, Dissertations, Professional Papers, and Capstones

Zero-valent iron nanoparticles (nZVI) have been studied as an option for soil remediation and water treatment for many years. The capability of nZVI to produce oxidation/reduction processes, depending on the reaction conditions, has attracted great interest with their major drawback being reactivity loss through agglomeration. The loss in nZVI surface area has been reported to be prevented through immobilization onto a porous media (e.g., SBA-15, MCM-41, or zeolites). In this work, a mesoporous silica structure (SBA-15) is used as an nZVI supporting material to enhance its reactivity and promote peroxymonosulfate (PMS) catalytic decomposition for the degradation of antibiotics in aqueous …


Potential Of Nanoscale Elements To Control Fusarium Wilt Disease In Tomato (Solanum Lycopersicum), Enhance Macronutrient Use Efficiency, And Increase Its Yield, Ishaq Olarewaju Adisa Jan 2019

Potential Of Nanoscale Elements To Control Fusarium Wilt Disease In Tomato (Solanum Lycopersicum), Enhance Macronutrient Use Efficiency, And Increase Its Yield, Ishaq Olarewaju Adisa

Open Access Theses & Dissertations

Nanotechnology has a great potential in ensuring food production, security and safety globally. Over the past decade, research on the use of nanomaterials to supply nutrient elements and protect plants from pest and diseases has significantly increased. Tomato (Solanum lycopersicum) is one of the most consumed vegetables in the world and United State is one of its largest producers globally generating billions of dollars annually in revenue.. Tomato plants are affected worldwide by Fusarium wilt caused by Fusarium oxysporum f. sp. Lycopersici. There is growing concern about excessive use of conventional pesticides in controlling Fusarium and other diseases in tomato …


Mass Spectrometry Analysis Of Contaminants Of Emerging Concern: Nanoparticles, Algal Toxins, And Cyanotoxins In Natural Waters And Their Potential Health Impacts, Ariel R. Donovan Jan 2019

Mass Spectrometry Analysis Of Contaminants Of Emerging Concern: Nanoparticles, Algal Toxins, And Cyanotoxins In Natural Waters And Their Potential Health Impacts, Ariel R. Donovan

Doctoral Dissertations

“The analysis of contaminants of emerging concern is critical to protecting environmental health. In the presented dissertation, two groups of contaminants of emerging concern were assessed using mass spectrometry methods: nanoparticles and algal and cyanotoxins.

Analysis of metal oxide nanoparticles in environmental matrices has been a challenging issue, as most traditional methods require complicated sample preparation methods or that can alter or destroy the nanoparticles in the system. Single particle inductively coupled plasma mass spectrometry (SP-ICP-MS) methods were used to detect metal oxide nanoparticles in surface waters and their removal through drinking water treatment simulations while retaining all information regarding …


Towards Engineering Advanced Nanomaterials: Elucidating Fundamental Particle Behavior In Water And Critical Sorption Dynamics, Changwoo Kim Dec 2018

Towards Engineering Advanced Nanomaterials: Elucidating Fundamental Particle Behavior In Water And Critical Sorption Dynamics, Changwoo Kim

McKelvey School of Engineering Theses & Dissertations

As advanced nanomaterials, inorganic-organic nano composites have received great interest as potential platform (nano) structures for sensor, catalyst, sorbent, and environmental applications. Here, my Ph.D. research has focused on the design, synthesis, and characterization of advanced water-stable engineered metal-oxide nanoparticles functionalized by organic frames for environmental applications. For the environmental applications, I have evaluated particleoptimized sorption processes for the remediation and separation of arsenic, chromium, and uranium under environmentally relevant conditions. More specifically, I have explored the critical role of organic coating on sorption mechanisms and performances using engineered iron oxide -based, manganese oxide -based, and manganese ferrite -based (core) …


Engineered Nanoparticles Interact With Nutrients To Intensify Eutrophication In A Wetland Ecosystem Experiment, Marie Simonin, Benjamin P. Colman, Steven M. Anderson, Ryan S. King, Matthew T. Ruis, Astrid Avellan, Christina M. Bergemann, Brittany G. Perrotta, Nicholas K. Geitner, Mengchi Ho, Belen De La Barrera, Jason M. Unrine, Gregory V. Lowry, Curtis J. Richardson, Mark R. Wiesner, Emily S. Bernhardt Sep 2018

Engineered Nanoparticles Interact With Nutrients To Intensify Eutrophication In A Wetland Ecosystem Experiment, Marie Simonin, Benjamin P. Colman, Steven M. Anderson, Ryan S. King, Matthew T. Ruis, Astrid Avellan, Christina M. Bergemann, Brittany G. Perrotta, Nicholas K. Geitner, Mengchi Ho, Belen De La Barrera, Jason M. Unrine, Gregory V. Lowry, Curtis J. Richardson, Mark R. Wiesner, Emily S. Bernhardt

Plant and Soil Sciences Faculty Publications

Despite the rapid rise in diversity and quantities of engineered nanomaterials produced, the impacts of these emerging contaminants on the structure and function of ecosystems have received little attention from ecologists. Moreover, little is known about how manufactured nanomaterials may interact with nutrient pollution in altering ecosystem productivity, despite the recognition that eutrophication is the primary water quality issue in freshwater ecosystems worldwide. In this study, we asked two main questions: (1) To what extent do manufactured nanoparticles affect the biomass and productivity of primary producers in wetland ecosystems? (2) How are these impacts mediated by nutrient pollution? To address …


Opto-Thermal Characterization Of Plasmon And Coupled Lattice Resonances In 2-D Metamaterial Arrays, Vinith Bejugam Aug 2018

Opto-Thermal Characterization Of Plasmon And Coupled Lattice Resonances In 2-D Metamaterial Arrays, Vinith Bejugam

Graduate Theses and Dissertations

Growing population and climate change inevitably requires longstanding dependency on sustainable sources of energy that are conducive to ecological balance, economies of scale and reduction of waste heat. Plasmonic-photonic systems are at the forefront of offering a promising path towards efficient light harvesting for enhanced optoelectronics, sensing, and chemical separations. Two-dimensional (2-D) metamaterial arrays of plasmonic nanoparticles arranged in polymer lattices developed herein support thermoplasmonic heating at off-resonances (near infrared, NIR) in addition to regular plasmonic resonances (visible), which extends their applicability compared to random dispersions. Especially, thermal responses of 2-D arrays at coupled lattice resonance (CLR) wavelengths were comparable …


Novel Solar Cells Based On Two-Dimensional Nanomaterials And Recycled Lead Components, Xiaoru Guo May 2018

Novel Solar Cells Based On Two-Dimensional Nanomaterials And Recycled Lead Components, Xiaoru Guo

Theses and Dissertations

To meet the rapidly growing demand for energy and reduce the use of dwindling fossil fuels, the efficient utilization of renewable energy is a constant pursuit globally. Because solar cells convert vastly available sunlight into electricity, developing high-performance and low-cost solar cells is a top strategy for future energy supply. Dye-sensitized solar cells (DSSCs) and perovskite solar cells (PSCs) are the most promising choices. In the meantime, highly concentrated sulfuric acids from retired lead-acid batteries become an environmental concern, and lead contamination in drinking water raises concerns in general public. This study addresses both above-mentioned problems by using two-dimensional (2D) …


Non-Covalent Functionalization Of Graphene Films For Uniform Nanoparticle Deposition Via Atoic Layer Deposition, Ty Seiwert May 2018

Non-Covalent Functionalization Of Graphene Films For Uniform Nanoparticle Deposition Via Atoic Layer Deposition, Ty Seiwert

Mechanical Engineering Undergraduate Honors Theses

Graphene functionalized with platinum (Pt) and palladium (Pd) has proven to be highly effective as a hydrogen sensor. Deposition methods such as Atomic layer deposition (ALD) can be further enhanced by pretreating the graphene with a non-covalent surfactant prior to nanoparticle deposition. In this study, graphene-based sensing devices will be fabricated by ALD deposition. The graphene will be non-covalently functionalized using sodium dodecyl sulfate (SDS) anionic surfactant prior to ALD deposition. The aim of this study is to test the deposition pattern achieved by varying the amount of time that graphene is treated with the SDS surfactant. Initially, ALD deposition …


Advancing The Understanding Of Environmental Transformations, Bioavailability And Effects Of Nanomaterials, An International Us Environmental Protection Agency—Uk Environmental Nanoscience Initiative Joint Program, Mitch M. Lasat, Kian Fan Chung, Jamie Lead, Steve Mcgrath, Richard J. Owen, Sophie Rocks, Jason M. Unrine, Junfeng Zhang Apr 2018

Advancing The Understanding Of Environmental Transformations, Bioavailability And Effects Of Nanomaterials, An International Us Environmental Protection Agency—Uk Environmental Nanoscience Initiative Joint Program, Mitch M. Lasat, Kian Fan Chung, Jamie Lead, Steve Mcgrath, Richard J. Owen, Sophie Rocks, Jason M. Unrine, Junfeng Zhang

Plant and Soil Sciences Faculty Publications

Nanotechnology has significant economic, health, and environmental benefits, including renewable energy and innovative environmental solutions. Manufactured nanoparticles have been incorporated into new materials and products because of their novel or enhanced properties. These very same properties also have prompted concerns about the potential environmental and human health hazard and risk posed by the manufactured nanomaterials. Appropriate risk management responses require the development of models capable of predicting the environmental and human health effects of the nanomaterials. Development of predictive models has been hampered by a lack of information concerning the environmental fate, behavior and effects of manufactured nanoparticles. The United …


Exploring The Effects Of Zinc Nanoparticle Concentration, Antioxidant, And Media On Cilantro (Coriandrum Sativum), And Radish (Raphanus Sativus) Plants Growth, Venkata Laxma Reddy Pullagurala Jan 2018

Exploring The Effects Of Zinc Nanoparticle Concentration, Antioxidant, And Media On Cilantro (Coriandrum Sativum), And Radish (Raphanus Sativus) Plants Growth, Venkata Laxma Reddy Pullagurala

Open Access Theses & Dissertations

Engineered nanomaterials (ENMs) have proven to be one of the emerging chemicals of concern in the contemporary times. Soil acts as one of the major sinks of these ENMs. Reports have shown that ENMs have varied effects on soil biota. Particularly, their effects on plants are inconsistent. Amongst these ENMs, ZnO nanoparticles (nZnO) are the fourth largest raw materials in the nanotechnology industry. Globally, it is estimated that around 34,000 tons of n ZnO are utilized per year. The nZnO exposure on terrestrial plants yielded both beneficial as well as detrimental effects. Recently, there is an emerging evidence about the …


Fabrication And Modification Of Titania Nanotube Arrays For Harvesting Solar Energy And Drug Delivery Applications, Ahmed El Ruby Abdel Rahman Mohamed Dec 2017

Fabrication And Modification Of Titania Nanotube Arrays For Harvesting Solar Energy And Drug Delivery Applications, Ahmed El Ruby Abdel Rahman Mohamed

Electronic Thesis and Dissertation Repository

The fast diminishing of fossil fuels in the near future, as well as the global warming caused by increasing greenhouse gases have motivated the urgent quest to develop advanced materials as cost-effective photoanodes for solar light harvesting and many other photocatalytic applications. Recently, titania nanotube arrays (TNTAs) fabricated by anodization process has attracted great interest due to their excellent properties such as: high surface area, vertically oriented, highly organized, one-dimensional, nanotubular structure, photoactivity, chemical stability and biocompatibility. This unique combination of excellent properties makes TNTAs an excellent photoanode for solar light harvesting. However, the relatively wide band gap energy of …


Synergistic Interactions Of H2 And N2 With Molten Gallium In The Presence Of Plasma, Maria L. Carreon, Daniel F. Jaramillo-Cabanzo, Indira Chaudhuri, Madhu Menon, Mahendra K. Sunkara Dec 2017

Synergistic Interactions Of H2 And N2 With Molten Gallium In The Presence Of Plasma, Maria L. Carreon, Daniel F. Jaramillo-Cabanzo, Indira Chaudhuri, Madhu Menon, Mahendra K. Sunkara

Physics and Astronomy Faculty Publications

The present study examines the interaction of hydrogen and nitrogen plasmas with gallium in an effort to gain insights into the mechanisms behind the synergetic effect of plasma and a catalytic metal. Absorption/desorption experiments were performed, accompanied by theoretical-computational calculations. Experiments were carried out in a plasma-enhanced, Ga-packed, batch reactor and entailed monitoring the change in pressure at different temperatures. The results indicated a rapid adsorption/dissolution of the gas into the molten metal when gallium was exposed to plasma, even at a low temperature of 100 °C. The experimental observations, when hydrogen was used, indicate that gallium acts as a …


Recent Advances On Iron Oxide Magnetic Nanoparticles As Sorbents Of Organic Pollutants In Water And Wastewater Treatment, Angela M. Gutierrez, Thomas D. Dziubla, J. Zach Hilt Mar 2017

Recent Advances On Iron Oxide Magnetic Nanoparticles As Sorbents Of Organic Pollutants In Water And Wastewater Treatment, Angela M. Gutierrez, Thomas D. Dziubla, J. Zach Hilt

Superfund Research Center Faculty Publications

The constant growth in population worldwide over the past decades continues to put forward the need to provide access to safe, clean water to meet human needs. There is a need for cost-effective technologies for water and wastewater treatment that can meet the global demands and the rigorous water quality standards and at the same maximizing pollutant efficiency removal. Current remediation technologies have failed in keeping up with these factors without becoming cost-prohibitive. Most recently, nanotechnology has been sought as the best alternative to increase access to water supplies by remediating those already contaminated and offering ways to access unconventional …


Lignin-Based Li-Ion Anode Materials Synthesized From Low-Cost Renewable Resources, Nicholas William Mcnutt Aug 2016

Lignin-Based Li-Ion Anode Materials Synthesized From Low-Cost Renewable Resources, Nicholas William Mcnutt

Doctoral Dissertations

In today’s world, the demand for novel methods of energy storage is increasing rapidly, particularly with the rise of portable electronic devices, electric vehicles, and the personal consumption and storage of solar energy. While other technologies have arguably improved at a rate that is exponential in accordance with Moore’s law, battery technology has lagged behind largely due to the difficulty in devising new electric storage systems that are simultaneously high performing, inexpensive, and safe.

In order to tackle these challenges, novel Li-ion battery anodes have been developed at Oak Ridge National Laboratory that are made from lignin, a low-cost, renewable …


Doped Tio2 Nanowires For Applications In Dye Sensitized Solar Cells And Sacrifical Hydrogen Production, Qasem Alsharari Apr 2016

Doped Tio2 Nanowires For Applications In Dye Sensitized Solar Cells And Sacrifical Hydrogen Production, Qasem Alsharari

Electronic Thesis and Dissertation Repository

This thesis explores the synthesis of metal oxide 1-D nanowires using a sol-gel method in supercritical carbon dioxide (sc-CO2), as an environmental friendly enabling solvent. Porous nanowires were synthesized and their performance was tested in dye sensitized solar cell and sacrifical hydrogen production. Titanium isopropoxide (TIP) was used as a precursor for titania synthesis while copper, bismuth and indium were examined as dopants, respectively. The sol-gel reactions were catalyzed by acetic acid in CO2 at a temperature of 60 °C and pressure of 5000 psi. It was observed that acetic acid/monomer ratio > 4 produced nanowires while a …


Novel Design And Synthesis Of Transition Metal Hydroxides And Oxides For Energy Storage Device Applications, Peifeng Li Jan 2016

Novel Design And Synthesis Of Transition Metal Hydroxides And Oxides For Energy Storage Device Applications, Peifeng Li

Wayne State University Theses

Supercapacitors (SCs) and Li-ion batteries (LIBs) are two types of important electrical energy storage devices with high power density and high energy density respectively. However, to satisfy the increasing demand of high-performance energy storage devices, the energy density of SCs and power/energy densities of LIBs have to be further improved. The exploration, research, and development of electrode materials with high-performance for applications in SCs and LIBs are still needed to meet the ever-increasing demand on energy and power densities. Herein, the amorphous Ni-Co-Mo ternary hydroxides nanoflakes for SCs and oxides nanoflakes for LIBs with ultrathin stature, abundant open spaces, and …


Single Particle-Inductively Coupled Plasma-Mass Spectrometry Technology Development For Metallic Nanoparticle Characterization In Complex Matrices, Yongbo Dan Jan 2016

Single Particle-Inductively Coupled Plasma-Mass Spectrometry Technology Development For Metallic Nanoparticle Characterization In Complex Matrices, Yongbo Dan

Doctoral Dissertations

"As the rapid growing of nanotechnology, the release of engineered nanoparticles (ENPs) into the environment is inevitable. After entering the real environment, ENPs tend to react with different components of the ecosystem (e.g. water, soil, air, plants) and make their characterization difficult. Analyzing ENPs in these complex matrices still remains as a grand challenge. ENPs characterization is normally the first step of risk assessment. Current analytical techniques have shown some limitations in revealing the unique characteristics of ENPs in complex matrices and reliable analytical techniques are in urgent need. Single particle inductively coupled plasma mass spectrometry (SP-ICP-MS) is an emerging …


New Approaches To Chalcogenide Materials For Thermoelectrics: Lead Telluride-Based Nanostructures And Facile Synthesis Of Tetrahedrite And Doped Derivatives, Derak Justin James Jan 2016

New Approaches To Chalcogenide Materials For Thermoelectrics: Lead Telluride-Based Nanostructures And Facile Synthesis Of Tetrahedrite And Doped Derivatives, Derak Justin James

Wayne State University Dissertations

The overall purpose of this work is to address several of the roadblocks to use of thermoelectric materials for generation of electricity, namely inefficient processing of materials and low performance, commonly rated by the figure of merit, ZT=T2/tot. The ZT includes  as the Seebeck coefficient,  as electrical resistivity, T as the average temperature, and tot as total thermal conductivity. tot is the sum of electronic charge carrier (C) and lattice (L) contributions to thermal conductivity. Attempts to increase ZT in the literature to values >1 have focused on decreasing the thermal conductivity via nanostructuring or optimizing the electrical …


Novel Design And Synthesis Of Structured Iron Oxides For Battery Applications, Jian Zhu Jan 2016

Novel Design And Synthesis Of Structured Iron Oxides For Battery Applications, Jian Zhu

Wayne State University Dissertations

Lithium-ion batteries (LIBs) are currently the dominant powder source for personal computers and portable electronics. LIBs also play important roles in larger-scale applications, including electric drive vehicles (EVs, HEVs) and grid-energy storage. To meet the increasing demand for energy storage, it is very urgent and crucial to develop next-generation LIBs using alternative electrode materials. For example, carbon is still exclusively used as anode materials in current LIBs. However, the theoretical capacity of graphite (372 mA h g–1 based on LiC6) has almost been achieved, and it becomes one of the bottlenecks to further increase the energy density of LIBs based …


Development Of Integrated Tio₂ On Carburized Si Nanowires As A Catalyst/Support Structure For Alkaline Fuel Cells, Adam Lemke Jan 2016

Development Of Integrated Tio₂ On Carburized Si Nanowires As A Catalyst/Support Structure For Alkaline Fuel Cells, Adam Lemke

Legacy Theses & Dissertations (2009 - 2024)

Due to a combination of environmental and economic motivations, there is a strong impetus to transition away from fossil fuels towards renewable sources of energy. Critical to achieving this goal will be technologies that allow for the storage and transmission of energy derived from renewable sources. Hydrogen fuel cells may play a significant role in making this a reality, allowing for the use of hydrogen as a non-carbon based fuel, in particular for vehicle applications. Hydrogen fuel cells directly convert chemical energy into electrical energy, with only water vapor and heat as waste products.


Tracking Silver, Gold, And Titanium Dioxide Nanoparticles Through Drinking Water Systems By Single Particle - Inductively Coupled Plasma - Mass Spectrometry, Ariel Renee Donovan Jan 2016

Tracking Silver, Gold, And Titanium Dioxide Nanoparticles Through Drinking Water Systems By Single Particle - Inductively Coupled Plasma - Mass Spectrometry, Ariel Renee Donovan

Masters Theses

"Single particle (SP)-ICP-MS methods were developed to characterize and quantify Ti-containing, titanium dioxide, silver, and gold NP concentration, size, size distribution and dissolved metal element concentration in surface water and treated drinking water. The effectiveness of conventional drinking water treatments (including lime softening, alum coagulation, filtration, and disinfection) to remove NPs from surface water was evaluated using six-gang stirrer jar test simulations. Six-gang stirrers were used to simulate drinking water treatments including lime softening, alum coagulation, powdered activated carbon sorption, filtration, and disinfection by free chlorine. Lime softening effectively removed most nanoparticles added. Source and drinking waters from three large …


Field Scale Application Of Nanoscale Zero Valent Iron: Mobility, Contaminant Degradation, And Impact On Microbial Communities, Chris M.D. Kocur Aug 2015

Field Scale Application Of Nanoscale Zero Valent Iron: Mobility, Contaminant Degradation, And Impact On Microbial Communities, Chris M.D. Kocur

Electronic Thesis and Dissertation Repository

This thesis began by verifying that nanoscale zero valent iron (nZVI) synthesis methods could be scaled up and implemented at the field scale in a safe manner. This led to successful demonstration of nZVI injection and mobility under constant head gravity injection into a contaminated utility corridor in Sarnia, Ontario. Where field studies have fallen short in the past was linking the somewhat qualitative field geochemical parameters to other evidence of nZVI transport. Definitive nZVI detection was elusive in previous field studies due to the highly reactive nature of the particles caused by their high surface area. nZVI was detected …


Synthesis Of Palladium And Palladium-Copper Nanostructures As Electrocatalysts, Haibin Wu Jul 2015

Synthesis Of Palladium And Palladium-Copper Nanostructures As Electrocatalysts, Haibin Wu

Graduate Theses and Dissertations

Pd and its alloys are alternatives of Pt as promising catalysts and electrocatalysts for many reactions. Size controlled synthesis of nanoparticles remains a major research subject, since smaller size particles show better catalytic performance. In this work, we developed a modified chemical wet method to prepare Pd and Pd-Cu nanostructures with uniform small size. Different sizes and shapes of Pd nanostructures were successfully synthesized by using the two reducing agents (i.e., L-ascorbyl-6-palmitate or phenylphosphinic acid). The reducing agents play a role to control the final morphologies and sizes of particles. The use of L-ascorbyl-6-palmitate favors to form irregular branch shapes …


Addressing Public Health Risks Of Persistent Pollutants Through Nutritional Modulation And Biomimetic Nanocomposite Remediation Platforms, Bradley J. Newsome Jan 2014

Addressing Public Health Risks Of Persistent Pollutants Through Nutritional Modulation And Biomimetic Nanocomposite Remediation Platforms, Bradley J. Newsome

Theses and Dissertations--Chemistry

Due to their relative chemical stability and ubiquity in the environment, chlorinated organic contaminants such as polychlorinated biphenyls (PCBs) pose significant health risks and enduring remediation challenges. Engineered nanoparticles (NPs) provide a novel platform for sensing/remediation of these toxicants, in addition to the growing use of NPs in many industrial and biomedical applications, but there remains concern for their potential long-term health effects. Research highlighted herein also represents a transdisciplinary approach to address human health challenges associated with exposure to PCBs and NPs. The objectives of this dissertation research are two-fold, 1) to develop effective methods for capture/sensing and remediation …


Solar Cell Temperature Dependent Efficiency And Very High Temperature Efficiency Limits, John Robert Wilcox Oct 2013

Solar Cell Temperature Dependent Efficiency And Very High Temperature Efficiency Limits, John Robert Wilcox

Open Access Dissertations

Clean renewable solar energy is and will continue to be a critically important source of electrical energy. Solar energy has the potential of meeting all of the world's energy needs, and has seen substantial growth in recent years. Solar cells can convert sun light directly into electrical energy, and much progress has been made in making them less expensive and more efficient. Solar cells are often characterized and modeled at 25 °C, which is significantly lower than their peak operating temperature. In some thermal concentrating systems, solar cells operate above 300 °C. Since increasing the temperature drastically affects the terminal …


Production Of Bioelectricity, Bio-Hydrogen, High Value Chemicals And 3 Bioinspired Nanomaterials By Electrochemically Active Biofilms, S. Kalathil, Mohammad Mansoob Khan Dr, M. H. Cho, J. Lee May 2013

Production Of Bioelectricity, Bio-Hydrogen, High Value Chemicals And 3 Bioinspired Nanomaterials By Electrochemically Active Biofilms, S. Kalathil, Mohammad Mansoob Khan Dr, M. H. Cho, J. Lee

Dr. Mohammad Mansoob Khan

Microorganisms naturally form biofilms on solid surfaces for their mutual benefits including protection from environmental stresses caused by contaminants, nutritional depletion or imbalances. The biofilms are normally dangerous to human health due to their inherited robustness. On the other hand, a recent study suggested that electrochemically active biofilms (EABs) generated by electrically active microorganisms have properties that can be used to catalyze or control the electrochemical reactions in a range of fields, such as bioenergy production, bioremediation, chemical/biological synthesis, bio-corrosion mitigation and biosensor development. EABs have attracted considerable attraction in bioelectrochemical systems (BESs), such as microbial fuel cells and microbial …


Enhanced Performance Of A Microbial Fuel Cell Using Cnt/Mno2 Nanocomposites As A Bioanode Materials, S. Kalathil, A Hoa, J Shim, Mohammad Mansoob Khan Dr, J Lee, M H. Cho Jan 2013

Enhanced Performance Of A Microbial Fuel Cell Using Cnt/Mno2 Nanocomposites As A Bioanode Materials, S. Kalathil, A Hoa, J Shim, Mohammad Mansoob Khan Dr, J Lee, M H. Cho

Dr. Mohammad Mansoob Khan

The anode electrode material is a crucial factor for the overall performance of a microbial fuel cell (MFC). In this study, a plain carbon paper modified with the CNT/MnO 2 nanocomposite was used as the anode for the MFC and a mixed culture inoculum was used as the biocatalyst. The modified anode showed better electrochemical performance than that of plain carbon paper, and Brunauer Emmett Teller (BET) analysis showed the high surface area (94.6 m2/g) of the composite. The Mn4+ in the nanocomposite may enhance the electron transfer between the microorganisms and the anode material which facilitates electron conduction. Additionally, …