Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Electronic Devices and Semiconductor Manufacturing

Acoustic streaming

Articles 1 - 2 of 2

Full-Text Articles in Nanoscience and Nanotechnology

Experimental And Numerical Investigation Of Nanoparticle Removal Using Acoustic Streaming And The Effect Of Time, Kaveh Bakhtari, Rasim O. Guldiken, Prashanth Makaram, Ahmed A. Busnaina, Jin-Goo Park Apr 2012

Experimental And Numerical Investigation Of Nanoparticle Removal Using Acoustic Streaming And The Effect Of Time, Kaveh Bakhtari, Rasim O. Guldiken, Prashanth Makaram, Ahmed A. Busnaina, Jin-Goo Park

Jin-Goo Park

Theremoval of nanoparticles is becoming increasingly challenging as the minimumlinewidth continues to decrease in semiconductor manufacturing. In this paper,the removal of nanoparticles from flat substrates using acoustic streamingis investigated. Bare silicon wafers and masks with a 4 nmsilicon cap layer are cleaned. The silicon-cap films are usedin extreme ultraviolet masks to protect Mo–Si reflective multilayers. Theremoval of 63 nm polystyrene latex (PSL) particles from these substratesis conducted using single-wafer megasonic cleaning. The results show higherthan 99% removal of PSL nanoparticles. The results also showthat dilute SC1 provides faster removal of particles, which isalso verified by the analytical analysis. Particle removal …


Experimental And Numerical Investigation Of Nanoparticle Removal Using Acoustic Streaming And The Effect Of Time, Kaveh Bakhtari, Rasim O. Guldiken, Prashanth Makaram, Ahmed A. Busnaina, Jin-Goo Park Jun 2011

Experimental And Numerical Investigation Of Nanoparticle Removal Using Acoustic Streaming And The Effect Of Time, Kaveh Bakhtari, Rasim O. Guldiken, Prashanth Makaram, Ahmed A. Busnaina, Jin-Goo Park

Ahmed A. Busnaina

Theremoval of nanoparticles is becoming increasingly challenging as the minimumlinewidth continues to decrease in semiconductor manufacturing. In this paper,the removal of nanoparticles from flat substrates using acoustic streamingis investigated. Bare silicon wafers and masks with a 4 nmsilicon cap layer are cleaned. The silicon-cap films are usedin extreme ultraviolet masks to protect Mo–Si reflective multilayers. Theremoval of 63 nm polystyrene latex (PSL) particles from these substratesis conducted using single-wafer megasonic cleaning. The results show higherthan 99% removal of PSL nanoparticles. The results also showthat dilute SC1 provides faster removal of particles, which isalso verified by the analytical analysis. Particle removal …