Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Nanoscience and Nanotechnology

Generalizing The Quantum Dot Lab Towards Arbitrary Shapes And Compositions, Matthew A. Bliss, Prasad Sarangapani, James Fonseca, Gerhard Klimeck Aug 2016

Generalizing The Quantum Dot Lab Towards Arbitrary Shapes And Compositions, Matthew A. Bliss, Prasad Sarangapani, James Fonseca, Gerhard Klimeck

The Summer Undergraduate Research Fellowship (SURF) Symposium

As applications in nanotechnology reach the scale of countable atoms, computer simulation has become a necessity in the understanding of new devices, such as quantum dots. To understand the various optoelectronic properties of these nanoparticles, the Quantum Dot Lab (QDL) has been created and powered by NEMO5 to simulate on multi-scale, multi-physics bases. QDL is easy to use by offering choices of different QD geometries such as shapes and sizes to the users from a predefined menu. The simplicity of use, however, limits the simulation of general QD shapes and compositions. A method to import generic strained crystalline and amorphous …


Bayesian Calibration Tool, Sveinn Palsson, Martin Hunt, Alejandro Strachan Aug 2014

Bayesian Calibration Tool, Sveinn Palsson, Martin Hunt, Alejandro Strachan

The Summer Undergraduate Research Fellowship (SURF) Symposium

Fitting a model to data is common practice in many fields of science. The models may contain unknown parameters and often, the goal is to obtain good estimates of them. A variety of methods have been developed for this purpose. They often differ in complexity, efficiency and accuracy and some may have very limited applications. Bayesian inference methods have recently become popular for the purpose of calibrating model's parameters. The way they treat unknown quantities is completely different from any classical methods. Even though the unknown quantity is a constant, it is treated as a random variable and the desired …


Granular Matter: Microstructural Evolution And Mechanical Response, Aashish Ghimire, Ishan Srivastava, Timothy S. Fisher Aug 2014

Granular Matter: Microstructural Evolution And Mechanical Response, Aashish Ghimire, Ishan Srivastava, Timothy S. Fisher

The Summer Undergraduate Research Fellowship (SURF) Symposium

Heterogeneous (nano) composites, manufactured by the densification of variously sized grains, represent an important and ubiquitous class of technologically relevant materials. Typical grain sizes in such materials range from macroscopic to a few nanometers. The morphology exhibited by such disordered materials is complex and intricately connected with its thermal and electrical transport properties. It is important to quantify the geometric features of these materials and simulate the fabrication process. Additionally, granular materials exhibit complex structural and mechanical properties that crucially govern their reliability during industrial use. In this work, we simulate the densification of soft deformable grains from a low-density …