Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 13 of 13

Full-Text Articles in Nanoscience and Nanotechnology

Fabrication And Modification Of Titania Nanotube Arrays For Harvesting Solar Energy And Drug Delivery Applications, Ahmed El Ruby Abdel Rahman Mohamed Dec 2017

Fabrication And Modification Of Titania Nanotube Arrays For Harvesting Solar Energy And Drug Delivery Applications, Ahmed El Ruby Abdel Rahman Mohamed

Electronic Thesis and Dissertation Repository

The fast diminishing of fossil fuels in the near future, as well as the global warming caused by increasing greenhouse gases have motivated the urgent quest to develop advanced materials as cost-effective photoanodes for solar light harvesting and many other photocatalytic applications. Recently, titania nanotube arrays (TNTAs) fabricated by anodization process has attracted great interest due to their excellent properties such as: high surface area, vertically oriented, highly organized, one-dimensional, nanotubular structure, photoactivity, chemical stability and biocompatibility. This unique combination of excellent properties makes TNTAs an excellent photoanode for solar light harvesting. However, the relatively wide band gap energy of ...


Damage Detection, Localization And Quantification In Conductive Smart Concrete Structures Using A Resistor Mesh Model, Austin Downey, Antonella D’Alessandro, Micah Baquera, Enrique García-Macías, Daniel Rolfes, Filippo Ubertini, Simon Laflamme, Rafael Castro-Triguero Oct 2017

Damage Detection, Localization And Quantification In Conductive Smart Concrete Structures Using A Resistor Mesh Model, Austin Downey, Antonella D’Alessandro, Micah Baquera, Enrique García-Macías, Daniel Rolfes, Filippo Ubertini, Simon Laflamme, Rafael Castro-Triguero

Civil, Construction and Environmental Engineering Publications

Interest in self-sensing structural materials has grown in recent years due to their potential to enable continuous low-cost monitoring of next-generation smart-structures. The development of cement-based smart sensors appears particularly well suited for structural health monitoring due to their numerous possible field applications, ease of use, and long-term stability. Additionally, cement-based sensors offer a unique opportunity for monitoring of civil concrete structures because of their compatibility with new and existing infrastructure. In this paper, we propose the use of a computationally efficient resistor mesh model to detect, localize and quantify damage in structures constructed from conductive cement composites. The proposed ...


Static And Dynamic Strain Monitoring Of Reinforced Concrete Components Through Embedded Carbon Nanotube Cement-Based Sensors, Antonella D’Alessandro, Filippo Ubertini, Enrique García-Macías, Rafael Castro-Triguero, Austin Downey, Simon Laflamme, Andrea Meoni, Annibale Luigi Materazzi Aug 2017

Static And Dynamic Strain Monitoring Of Reinforced Concrete Components Through Embedded Carbon Nanotube Cement-Based Sensors, Antonella D’Alessandro, Filippo Ubertini, Enrique García-Macías, Rafael Castro-Triguero, Austin Downey, Simon Laflamme, Andrea Meoni, Annibale Luigi Materazzi

Civil, Construction and Environmental Engineering Publications

The paper presents a study on the use of cement-based sensors doped with carbon nanotubes as embedded smart sensors for static and dynamic strain monitoring of reinforced concrete (RC) elements. Such novel sensors can be used for the monitoring of civil infrastructures. Because they are fabricated from a structural material and are easy to utilize, these sensors can be integrated into structural elements for monitoring of different types of constructions during their service life. Despite the scientific attention that such sensors have received in recent years, further research is needed to understand (i) the repeatability and accuracy of sensors’ behavior ...


Novel Nanocomposite Clay Brick For Strain Sensing In Structural Masonry, F. Ubertini, A. D'Alessandro, A. L. Materazzi, Simon Laflamme, Austin Downey Jul 2017

Novel Nanocomposite Clay Brick For Strain Sensing In Structural Masonry, F. Ubertini, A. D'Alessandro, A. L. Materazzi, Simon Laflamme, Austin Downey

Civil, Construction and Environmental Engineering Conference Presentations and Proceedings

The monitoring of civil structures is critical in ensuring users' safety. Structural health monitoring (SHM) is the automation of this monitoring task. It is typically used to identify incipient damages through a spatio-temporal comparison in structural behaviors. Traditional sensors exhibit mechanical characteristics that are usually very different from those of the structures they monitor, which is a factor limiting their durability. Ideally, the material of a sensor would share the same mechanical characteristics as the material onto or into which it is installed. A solution is to fabricate multifunctional materials, capable of serving both structural and sensing functions, also known ...


Mechanical Characterization Of Polymer Concrete With Nanomaterials, Alaeddin Douba Jun 2017

Mechanical Characterization Of Polymer Concrete With Nanomaterials, Alaeddin Douba

Civil Engineering ETDs

Nanomaterials are defined by those whose characteristic length scale lies within the nanometer scale. Their extreme dimension achieves extraordinary mechanical properties superior to other micro and macro additives. The introduction of nanotechnology to Civil Engineering utilizes low volume inclusions of nanomaterials to alter the properties of conventionally used bulk materials. Polymer Concrete (PC) where epoxy polymer binders replace cement binders, has become a common repair material among many other application and often can be considered an alternative to Portland cement concrete (PCC). PC is often used in bridge deck overlays, manholes, machine foundations and repairs. Its diverse chemical composition and ...


Platinum Nanoparticle Decorated Sio2 Microfibers As Catalysts For Micro Unmanned Underwater Vehicle Propulsion, Bolin Chen, Nathaniel T. Garland, Jason Geder, Marius Pruessner, Eric Mootz, Allison Cargill, Anne Leners, Granit Vokshi, Jacob Davis, Wyatt Burns, Michael A. Daniele, Josh Kogot, Igor L. Medintz, Jonathan C. Claussen Jun 2017

Platinum Nanoparticle Decorated Sio2 Microfibers As Catalysts For Micro Unmanned Underwater Vehicle Propulsion, Bolin Chen, Nathaniel T. Garland, Jason Geder, Marius Pruessner, Eric Mootz, Allison Cargill, Anne Leners, Granit Vokshi, Jacob Davis, Wyatt Burns, Michael A. Daniele, Josh Kogot, Igor L. Medintz, Jonathan C. Claussen

Jonathan C. Claussen

Micro unmanned underwater vehicles (UUVs) need to house propulsion mechanisms that are small in size but sufficiently powerful to deliver on-demand acceleration for tight radius turns, burst-driven docking maneuvers, and low-speed course corrections. Recently, small-scale hydrogen peroxide (H2O2) propulsion mechanisms have shown great promise in delivering pulsatile thrust for such acceleration needs. However, the need for robust, high surface area nanocatalysts that can be manufactured on a large scale for integration into micro UUV reaction chambers is still needed. In this report, a thermal/electrical insulator, silicon oxide (SiO2) microfibers, is used as a support for platinum nanoparticle (PtNP) catalysts ...


Enhanced Lumped Circuit Model For Smart Nanocomposite Cement-Based Sensors Under Dynamic Compressive Loading Conditions, Enrique García-Macías, Austin Downey, Antonella D’Alessandro, Rafael Castro-Triguero, Simon Laflamme, Filippo Ubertini Jun 2017

Enhanced Lumped Circuit Model For Smart Nanocomposite Cement-Based Sensors Under Dynamic Compressive Loading Conditions, Enrique García-Macías, Austin Downey, Antonella D’Alessandro, Rafael Castro-Triguero, Simon Laflamme, Filippo Ubertini

Civil, Construction and Environmental Engineering Publications

Smart composite nanostructured materials represent one of the fastest-growing areas of interest among scientists in recent years and, in particular, carbon nanotube (CNT) cement-based composites are attracting more and more attention. These composites exhibit self-sensing capabilities providing measurable variations of their electrical properties under the application of mechanical deformations. Together with this exceptional property, the similarity and compatibility between these composites and structural concrete suggest the possibility of developing distributed embedded strain-sensing systems with substantial improvements in the cost-effectiveness in applications to large-scale concrete structures. In order to design and optimize CNT reinforced cement based dynamic sensors, it is fundamental ...


Total N-Nitrosamine Precursor Adsorption With Carbon Nanotubes: Elucidating Controlling Physiochemical Properties And Developing A Size-Resolved Precursor Surrogate, Erin Needham May 2017

Total N-Nitrosamine Precursor Adsorption With Carbon Nanotubes: Elucidating Controlling Physiochemical Properties And Developing A Size-Resolved Precursor Surrogate, Erin Needham

Theses and Dissertations

As drinking water sources become increasingly impaired with nutrients and wastewater treatment plant (WWTP) effluent, formation of disinfection byproducts (DBPs) – such as trihalomethanes (THMs), dihaloacetonitriles (DHANs), and N-nitrosamines – during water treatment may also increase. N-nitrosamines may comprise the bulk of the chronic toxicity in treated drinking waters despite forming at low ng/L levels. This research seeks to elucidate physicochemical properties of carbon nanotubes (CNTs) for removal of DBP precursors, with an emphasis on total N-nitrosamines (TONO).

Batch experiments with CNTs were completed to assess adsorption of THM, DHAN, and TONO precursors; physiochemical properties of CNTs were quantified through gas ...


Trihalomethane, Dihaloacetonitrile, And Total N-Nitrosamine Precursor Adsorption By Carbon Nanotubes: The Importance Of Surface Oxides And Pore Volume, Erin Needham May 2017

Trihalomethane, Dihaloacetonitrile, And Total N-Nitrosamine Precursor Adsorption By Carbon Nanotubes: The Importance Of Surface Oxides And Pore Volume, Erin Needham

Theses and Dissertations

As drinking water sources become increasingly impaired, enhanced removal of natural organic matter (NOM) may be required to curb formation of disinfection byproducts (DBPs) upon chlor(am)ination. While carbon nanotubes (CNTs) can adsorb NOM, their properties for DBP precursor adsorption have not been elucidated. Nine types of CNTs were assessed for trihalomethane (THM), dihaloacetonitrile (DHAN), and total N-nitrosamine (TONO) precursor adsorption. Batch isotherm experiments were completed with lake water and, to simulate an impaired condition, effluent from a wastewater treatment plant (WWTP). Adsorption varied with CNT type and dose, with TONO precursors having the highest percent removals from WWTP ...


Continuous And Embedded Solutions For Shm Of Concrete Structures Using Changing Electrical Potential In Self-Sensing Cement-Based Composites, Austin Downey, Enrique Garcia-Macias, Antonella D'Alessandro, Simon Laflamme, Rafael Castro-Triguero, Filippo Ubertini Apr 2017

Continuous And Embedded Solutions For Shm Of Concrete Structures Using Changing Electrical Potential In Self-Sensing Cement-Based Composites, Austin Downey, Enrique Garcia-Macias, Antonella D'Alessandro, Simon Laflamme, Rafael Castro-Triguero, Filippo Ubertini

Civil, Construction and Environmental Engineering Conference Presentations and Proceedings

Interest in the concept of self-sensing structural materials has grown in recent years due to its potential to enable continuous low-cost monitoring of next-generation smart-structures. The development of cement-based smart sensors appears particularly well suited for monitoring applications due to their numerous possible field applications, their ease of use and long-term stability. Additionally, cement-based sensors offer a unique opportunity for structural health monitoring of civil structures because of their compatibility with new or existing infrastructure. Particularly, the addition of conductive carbon nanofillers into a cementitious matrix provides a self-sensing structural material with piezoresistive characteristics sensitive to deformations. The strain-sensing ability ...


Effect Of Hydration And Confinement On Micro-Structure Of Calcium-Silicate-Hydrate Gels, Harish Kumar Gadde Jan 2017

Effect Of Hydration And Confinement On Micro-Structure Of Calcium-Silicate-Hydrate Gels, Harish Kumar Gadde

Civil Engineering Graduate Theses & Dissertations

Calcium-silicate-hydrate(C-S-H) gel is a primary nano-crystalline phase present in hydrated Ordinary Portland Cement (OPC) responsible for its strength and creep behavior. Our reliance on cement for infrastructure is global, and there is a need to improve infrastructure life-times. A way forward is to engineer the cement with more durability and long-term strength. The main purpose of this research is to quantify the micro-structure of C-S-H to see if cement can be engineered at various length scales to improve long-term behavior by spatial arrangement. We investigate the micro-structure evolution of C-S-H in cement as a function of hydration time and ...


Effect Of Hydration And Confinement On Micro-Structure Of Calcium-Silicate-Hydrate Gels, Harish Kumar Gadde Jan 2017

Effect Of Hydration And Confinement On Micro-Structure Of Calcium-Silicate-Hydrate Gels, Harish Kumar Gadde

Civil Engineering Graduate Theses & Dissertations

Calcium-silicate-hydrate(C-S-H) gel is a primary nano-crystalline phase present in hydrated Ordinary Portland Cement (OPC) responsible for its strength and creep behavior. Our reliance on cement for infrastructure is global, and there is a need to improve infrastructure life-times. A way forward is to engineer the cement with more durability and long-term strength. The main purpose of this research is to quantify the micro-structure of C-S-H to see if cement can be engineered at various length scales to improve long-term behavior by spatial arrangement. We investigate the micro-structure evolution of C-S-H in cement as a function of hydration time and ...


Tunable Nanocomposite Membranes For Water Remediation And Separations, Sebastián Hernández Sierra Jan 2017

Tunable Nanocomposite Membranes For Water Remediation And Separations, Sebastián Hernández Sierra

Theses and Dissertations--Chemical and Materials Engineering

Nano-structured material fabrication using functionalized membranes with polyelectrolytes is a promising research field for water pollution, catalytic and mining applications. These responsive polymers react to external stimuli like temperature, pH, radiation, ionic strength or chemical composition. Such nanomaterials provide novel hybrid properties and can also be self-supported in addition to the membranes.

Polyelectrolytes (as hydrogels) have pH responsiveness. The hydrogel moieties gain or lose protons based on the pH, displaying swelling properties. These responsive materials can be exploited to synthesize metal nanoparticles in situ using their functional groups, or to immobilize other polyelectrolytes and biomolecules. Due to their properties, these ...