Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Nanoscience and Nanotechnology

Exploring The Effects Of Zinc Nanoparticle Concentration, Antioxidant, And Media On Cilantro (Coriandrum Sativum), And Radish (Raphanus Sativus) Plants Growth, Venkata Laxma Reddy Pullagurala Jan 2018

Exploring The Effects Of Zinc Nanoparticle Concentration, Antioxidant, And Media On Cilantro (Coriandrum Sativum), And Radish (Raphanus Sativus) Plants Growth, Venkata Laxma Reddy Pullagurala

Open Access Theses & Dissertations

Engineered nanomaterials (ENMs) have proven to be one of the emerging chemicals of concern in the contemporary times. Soil acts as one of the major sinks of these ENMs. Reports have shown that ENMs have varied effects on soil biota. Particularly, their effects on plants are inconsistent. Amongst these ENMs, ZnO nanoparticles (nZnO) are the fourth largest raw materials in the nanotechnology industry. Globally, it is estimated that around 34,000 tons of n ZnO are utilized per year. The nZnO exposure on terrestrial plants yielded both beneficial as well as detrimental effects. Recently, there is an emerging evidence about the …


Novel Engineered Nanomaterials For Water Remediation And Gas Adsorption: Graphene Oxide And Carbon Nanotubes Decorated With Metal-Organic Frameworks And Magnetic Nanoparticles, Vahid Jabbari Jan 2015

Novel Engineered Nanomaterials For Water Remediation And Gas Adsorption: Graphene Oxide And Carbon Nanotubes Decorated With Metal-Organic Frameworks And Magnetic Nanoparticles, Vahid Jabbari

Open Access Theses & Dissertations

In the current study, a series of novel magnetic and non-magnetic hybrid nanocomposites based on metal-organic frameworks (MOFs) of M3(BTC)2 (M: Ni, Cu, Zn, and Cd), graphene oxide (GrO), and carbon nanotubes (CNTs), and Fe3O4 magnetic nanoparticles (MNPs) were developed via a green, simple and versatile solvothermal method at which GrO and CNT were used as platform to grow the MOFs and Fe3O4 MNPs over them. The as-synthesized nanocomposites were characterized by XRD, SEM, TEM, XPS, IR, Raman, TGA, and N2 adsorption/desorption isotherms. Morphological analysis confirmed successful growth of nano-size Fe3O4 MNPs and M3(BTC)2 MOFs over GrO and CNT platforms. …