Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 15 of 15

Full-Text Articles in Nanoscience and Nanotechnology

Surface Structure Engineering Of Feni-Based Pre-Catalyst For Oxygen Evolution Reaction: A Mini Review, Jia-Xin Li, Li-Gang Feng Sep 2022

Surface Structure Engineering Of Feni-Based Pre-Catalyst For Oxygen Evolution Reaction: A Mini Review, Jia-Xin Li, Li-Gang Feng

Journal of Electrochemistry

Oxygen evolution reaction (OER) is a significant half-reaction for water splitting reaction, and attention is directed to the high-performance non-precious catalysts. Iron nickel (FeNi)-based material is considered as the most promising pre-catalyst, that will be transferred to the real active phase in the form of high valence state metal species. Even so, the catalytic performance is largely influenced by the structure and morphology of the FeNi pre-catalysts, and lots of work has been done to optimize and tune the structure and chemical environment of the FeNi- based pre-catalysts so as to increase the catalytic performance. Herein, based on our work, …


Degradation Of Antibiotics In Aqueous Phase Using Pms Catalytic Decomposition With Zero-Valent Iron Nanoparticles Immobilized In Sba-15, Ahdee Bluma Zeidman May 2021

Degradation Of Antibiotics In Aqueous Phase Using Pms Catalytic Decomposition With Zero-Valent Iron Nanoparticles Immobilized In Sba-15, Ahdee Bluma Zeidman

UNLV Theses, Dissertations, Professional Papers, and Capstones

Zero-valent iron nanoparticles (nZVI) have been studied as an option for soil remediation and water treatment for many years. The capability of nZVI to produce oxidation/reduction processes, depending on the reaction conditions, has attracted great interest with their major drawback being reactivity loss through agglomeration. The loss in nZVI surface area has been reported to be prevented through immobilization onto a porous media (e.g., SBA-15, MCM-41, or zeolites). In this work, a mesoporous silica structure (SBA-15) is used as an nZVI supporting material to enhance its reactivity and promote peroxymonosulfate (PMS) catalytic decomposition for the degradation of antibiotics in aqueous …


Engineered Nanoparticles For Site-Specific Bioorthogonal Catalysis: Imaging And Therapy, Riddha Das Mar 2020

Engineered Nanoparticles For Site-Specific Bioorthogonal Catalysis: Imaging And Therapy, Riddha Das

Doctoral Dissertations

Bioorthogonal catalysis offers a strategy for chemical transformations complementary to bioprocesses and has proven to be a powerful tool in biochemistry and medical sciences. Transition metal catalysts (TMCs) have emerged as a powerful tool to execute selective chemical transformations, however, lack of biocompatibility and stability limits their use in biological applications. Incorporation of TMCs into nanoparticle monolayers provides a versatile strategy for the generation of bioorthogonal nanocatalysts known as “nanozymes”. We have fabricated a family of nanozymes using gold nanoparticles (AuNPs) as scaffolds featuring diverse chemical functional groups for controlled localization of nanozymes in biological environments, providing unique strategies for …


Nanostructured Metal Thin Films As Components Of Composite Membranes For Separations And Catalysis, Michael J. Detisch Jan 2020

Nanostructured Metal Thin Films As Components Of Composite Membranes For Separations And Catalysis, Michael J. Detisch

Theses and Dissertations--Chemical and Materials Engineering

Novel metallic thin film composite membranes are synthesized and evaluated in this work for improved separations and catalysis capabilities. Advances in technology that allow for improved membrane performance in solvent separations are desirable for low molecular weight organic separation applications such as those in pharmaceutical industries. Additionally, the introduction of catalytic materials into membrane systems allow for optimization of complex processes in a single step. By adding a nanostructured metallic thin film to its surface, a polymer membrane may be modified to exhibit these improved properties. Using magnetron sputtering, thin metal films may be deposited on commercially available membranes to …


A Study Of Protein And Peptide-Directed Nanoparticle Synthesis For Catalytic Materials, Abdollah Mosleh Aug 2019

A Study Of Protein And Peptide-Directed Nanoparticle Synthesis For Catalytic Materials, Abdollah Mosleh

Graduate Theses and Dissertations

Nanoparticles have received much attentions due to their unique properties that makes them suitable candidates for a broad range of applications. As the size of particles decreases, their surface area-to-volume ratio would increase which is the main cause of much attention. In addition to the size, their morphologies and compositions may also play important roles for defining unique properties. Nanoparticle synthesis include both bottom-up and top-down strategies. To control the process of inorganic nanoparticles synthesis one could follow the bottom-up approach to have atom-level control over their compositions, morphologies, phases, and sizes which is the subject of this work. Due …


Development Of A Ws2 Catalyst For Hydrogen Evolution And Improvement Via Platinum Nanoparticle Decoration, Alexander O'Brien May 2019

Development Of A Ws2 Catalyst For Hydrogen Evolution And Improvement Via Platinum Nanoparticle Decoration, Alexander O'Brien

Chemical Engineering Undergraduate Honors Theses

In response to a growing global need to improve utilization of green energy, the concept of renewable energy storage via electrolytic hydrogen production has gained popularity in recent years. However, the prohibitive expense of the bulk platinum catalysts currently used for the hydrogen evolution reaction prevents such a concept from being widely adoptable. This research focuses on a possible alternative catalyst, nanolayer WS2, which is capable of promoting the hydrogen evolution reaction while maintaining economic viability. Bulk WS2 was prepared in semiconducting, nanolayer form through liquid phase exfoliation. Prepared catalyst inks consisting of this material demonstrated successful …


Spectro-Electrochemical Platforms For Dynamic Analyses Of Catalytic Cascade Systems, Nalin I. Andersen Apr 2018

Spectro-Electrochemical Platforms For Dynamic Analyses Of Catalytic Cascade Systems, Nalin I. Andersen

Nanoscience and Microsystems ETDs

The development of spectro-electrochemical platforms that facilitate the dynamic analyses of complex catalytic cascade systems was explored in this research. These systems facilitated multiple modalities of catalysts and were used as platforms for monitoring catalytic transformations quasi-in situ. The analytical platforms allowed for the characterization of intermediates and products using surface-enhanced Raman spectroscopy (SERS). The design and fabrication of these devices proved to be reproducible, made of materials that can be manipulated for multiple applications, and incorporate fluid mechanics, electrochemistry, and multimodal catalysis. Microfluidic technology offers capabilities for understanding catalytic cascade systems by providing precise dynamic control of …


Synergistic Interactions Of H2 And N2 With Molten Gallium In The Presence Of Plasma, Maria L. Carreon, Daniel F. Jaramillo-Cabanzo, Indira Chaudhuri, Madhu Menon, Mahendra K. Sunkara Dec 2017

Synergistic Interactions Of H2 And N2 With Molten Gallium In The Presence Of Plasma, Maria L. Carreon, Daniel F. Jaramillo-Cabanzo, Indira Chaudhuri, Madhu Menon, Mahendra K. Sunkara

Physics and Astronomy Faculty Publications

The present study examines the interaction of hydrogen and nitrogen plasmas with gallium in an effort to gain insights into the mechanisms behind the synergetic effect of plasma and a catalytic metal. Absorption/desorption experiments were performed, accompanied by theoretical-computational calculations. Experiments were carried out in a plasma-enhanced, Ga-packed, batch reactor and entailed monitoring the change in pressure at different temperatures. The results indicated a rapid adsorption/dissolution of the gas into the molten metal when gallium was exposed to plasma, even at a low temperature of 100 °C. The experimental observations, when hydrogen was used, indicate that gallium acts as a …


A Study Of Iron-Nitrogen-Carbon Fuel Cell Catalysts: Chemistry – Nanostructure – Performance, Michael J. Workman Mar 2017

A Study Of Iron-Nitrogen-Carbon Fuel Cell Catalysts: Chemistry – Nanostructure – Performance, Michael J. Workman

Nanoscience and Microsystems ETDs

Fuel cells have the potential to be a pollution-free, low-cost, and energy efficient alternative to the internal combustion engine for transportation and small-scale stationary power applications. The current state of fuel cell technology has already achieved two of these three lofty goals. The remaining barrier to wide-scale deployment is the high cost, which is primarily caused by dependence on large amounts of platinum to catalyze the energy conversion reactions. To overcome this barrier and facilitate the integration of fuel cells into mainstream applications, research into a new class of catalyst materials that do not require platinum is needed.

There has …


Nanonickel Catalyst Reinforced With Silicate For Methane Decomposition To Produce Hydrogen And Nanocarbon: Synthesis By Co-Precipitation Cum Modified Stöber Method, Upm Ashik, Wma Wan Daud May 2015

Nanonickel Catalyst Reinforced With Silicate For Methane Decomposition To Produce Hydrogen And Nanocarbon: Synthesis By Co-Precipitation Cum Modified Stöber Method, Upm Ashik, Wma Wan Daud

upm ashik

Co-precipitation cum modified Stöber method is a continuous process avoiding application of higher temperature treatment before supporting nanometal with SiO2, irrespective of pre-preparation methods. We have conducted the co-precipitation process without undertaking calcination under air in order to avoid even a partial particle agglomeration and hence maintained average particle size [similar]30 nm after enforcing with SiO2. This is the first report adopting such an unceasing preparation for preparing metal/silicate nanostructures. Furthermore, n-Ni/SiO2 nanostructured catalysts were used for thermocatalytic decomposition of methane to produce hydrogen and carbon nanotubes. The catalyst was found to be very stable and the methane transformation activity …


Biodiesel Production From Waste Trying Oils Over Lime Catalysts, João F. Gomes Jan 2013

Biodiesel Production From Waste Trying Oils Over Lime Catalysts, João F. Gomes

João F Gomes

No abstract provided.


Advances On The Development Of Novel Heterogeneous Catalysts For Transesterification Of Triglycerides In Biodiesel, João F. Gomes Jan 2010

Advances On The Development Of Novel Heterogeneous Catalysts For Transesterification Of Triglycerides In Biodiesel, João F. Gomes

João F Gomes

This paper describes experimental work done towards the search for more profitable and sustainable alternatives regarding biodiesel production, using heterogeneous catalysts instead of the conventional homogenous alkaline catalysts, such as NaOH, KOH or sodium methoxide, for the methanolysis reaction. This experimental work is a first stage on the development and optimization of new solid catalysts, able to produce biodiesel from vegetable oils. The heterogeneous catalytic process has many differences from the currently used in industry homogeneous process. The main advantage is that, it requires lower investment costs, since no need for separation steps of methanol/catalyst, biodiesel/catalyst and glycerine/catalyst. This work …


Studies On The Development Of Novel Heterogeneous Catalysts For Transesterification Of Triglycerides In Biodiesel, João F. Gomes Jan 2010

Studies On The Development Of Novel Heterogeneous Catalysts For Transesterification Of Triglycerides In Biodiesel, João F. Gomes

João F Gomes

No abstract provided.


2009 Report Of Crerg Research Activities, João F. Gomes Dec 2009

2009 Report Of Crerg Research Activities, João F. Gomes

João F Gomes

No abstract provided.


2008 Report Of Crerg Research Activities, João F. Gomes Jan 2009

2008 Report Of Crerg Research Activities, João F. Gomes

João F Gomes

No abstract provided.