Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Nanoscience and Nanotechnology

Synthesis, Characterization, And Activity Of Co/Fe Alumina/Silica Supported Ft Catalysts And The Study Of Promoter Effect Of Ruthenium, Sunday Azubike Esumike Jan 2017

Synthesis, Characterization, And Activity Of Co/Fe Alumina/Silica Supported Ft Catalysts And The Study Of Promoter Effect Of Ruthenium, Sunday Azubike Esumike

Doctoral Dissertations

The alumina and hybrid alumina-silica FT catalyst were prepared by one-step solgel/oil-drop methods using metal-nitrate-solutions (method-I), and nanoparticle-metaloxides (method-2). The nanoparticle-metal-oxides did not participate in solubility equilibria in contrast to metal nitrate in method-1 causing no metal ion seepage; therefore, method-2 yields higher XRF metal loading efficiency than method-1. The thermal analysis confirmed that the metal loading by method-1 and method-2 involved two different pathways. Method-1 involves solubility equilibria in the conversion of metal-nitrate to metal- hydroxide and finally to metal-oxide, while in method-2 nanoparticle-metal-oxide remained intact during sol-gel-oil-drop and calcination steps.

The alumina supported catalysts were dominated by γ-alumina …


Immobilization Of Cellulase For Large Scale Reactors To Reduce Cellulosic Ethanol Cost, Dezhi Zhang Apr 2016

Immobilization Of Cellulase For Large Scale Reactors To Reduce Cellulosic Ethanol Cost, Dezhi Zhang

Doctoral Dissertations

Cellulosic ethanol is an alternative renewable energy source. Cellulase used in the production of cellulosic ethanol is very expensive. The difficulty in separating cellulase from the cellulose solution after the hydrolysis process limits the reusability of the cellulase, which highly precludes the scales of this application because of the high cost of the enzyme. Immobilization of cellulase provides a promising approach to allow the enzyme to be recycled, thus reducing the production cost. This research focused on immobilizing cellulase for reuse to reduce the cellulosic ethanol cost.

Four immobilization techniques were explored for the immobilization of cellulase on four different …


Mechanistic Study Of The Hydrothermal Reduction Of Palladium On The Tobacco Mosaic Virus, Oluwamayowa Oluwarotimi Adigun Apr 2014

Mechanistic Study Of The Hydrothermal Reduction Of Palladium On The Tobacco Mosaic Virus, Oluwamayowa Oluwarotimi Adigun

Open Access Theses

Synthesis of nanorods and nanowires is becoming more and more important due to interest in them in a wide range of disciplines. The genetically engineered tobacco mosaic virus (TMV1Cys) provides a template for synthesis of uniform metal nanorods at mild operating conditions and without the use of any expensive technology compared to conventional synthetic methods. The discovery of the hydrothermal synthetic scheme has allowed the production of higher quality nanorods on the TMV template. However, the mechanism for reduction and growth in this process is still not understood. In this paper, the mechanism of synthesis for producing uniform, controllable palladium …


Modeling, Fabrication And Characterization Of Scalable Electroless Gold Plated Nanostructures For Enhanced Surface Plasmon Resonance, Gyoung Gug Jang Dec 2012

Modeling, Fabrication And Characterization Of Scalable Electroless Gold Plated Nanostructures For Enhanced Surface Plasmon Resonance, Gyoung Gug Jang

Graduate Theses and Dissertations

The scientific and industrial demand for controllable thin gold (Au) film and Au nanostructures is increasing in many fields including opto-electronics, photovoltaics, MEMS devices, diagnostics, bio-molecular sensors, spectro-/microscopic surfaces and probes. In this study, a novel continuous flow electroless (CF-EL) Au plating method is developed to fabricate uniform Au thin films in ambient condition. The enhanced local mass transfer rate and continuous deposition resulting from CF-EL plating improved physical uniformity of deposited Au films and thermally transformed nanoparticles (NPs). Au films and NPs exhibited improved optical photoluminescence (PL) and surface plasmon resonance (SPR), respectively, relative to batch immersion EL (BI-EL) …


Refractive Index Chemical Sensing With Noble Metal Nanoparticles, Phillip Blake Dec 2012

Refractive Index Chemical Sensing With Noble Metal Nanoparticles, Phillip Blake

Graduate Theses and Dissertations

Chemical sensing is a key component in modern society, especially in engineering applications. Because of their widespread impact, improvements to chemical sensors are a significant area of research. One class of sensors, plasmonic sensors, is being heavily researched because of their ability to detect low levels of analyte in near real time without destroying the analyte. This work studies a new class of plasmonic sensor that utilizes diffractive coupling to improve sensor performance. Specifically, this work outlines the first study of diffractive coupling sensors with typical nanoparticle shapes. Sensitivity of this new class of sensor is directly compared to typical …


Peptoid Based Slide Coatings For Disease Detection Via Elisa Microarray Analysis, Melissa Lea Hebert Aug 2012

Peptoid Based Slide Coatings For Disease Detection Via Elisa Microarray Analysis, Melissa Lea Hebert

Graduate Theses and Dissertations

Poly-N-substituted glycines (peptoids) are a very versatile family of synthetic molecules that can be customized for any number of applications. In this study, we chose to use peptoids as a foundation for sandwich ELISA microarray analysis with a long term goal of creating an early detection device for complex diseases such as cancer. The peptoids were designed to self-assemble into microspheres to be used in coatings on the surface of the microarray substrates to increase the surface area available for antibody attachment. This increased antibody density would lead to an increase in the microarray analysis sensitivity and dynamic range. Studies …


Plasmonic Pervaporation Via Gold Nanoparticle-Functionalized Nanocomposite Membranes, Aaron Russell Aug 2012

Plasmonic Pervaporation Via Gold Nanoparticle-Functionalized Nanocomposite Membranes, Aaron Russell

Graduate Theses and Dissertations

Butanol derived from biological feedstocks has significant potential as a liquid fuel source, but the separation methods used in its production can be prohibitively expensive and are therefore currently the subject of extensive research. Pervaporation is a promising membrane process that is effective in butanol separations, but involves a large energy demand. This study examines the possibility of increasing flux and energy efficiency in pervaporation via plasmonic heating of gold nanoparticle-functionalized, polymer nanocomposite membranes (AuNCMs) in lieu of conventional feed heating. An economic analysis demonstrated that plasmonic pervaporation could achieve significant reductions in energy usage and utility cost in butanol …