Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Chemical Engineering

2019

Institution
Keyword
Publication
Publication Type

Articles 1 - 30 of 32

Full-Text Articles in Nanoscience and Nanotechnology

Transient Electrochemical Surface-Enhanced Raman Spectroscopic Study In Electrochemical Reduction Of P-Nitrothiophenol, Yun Ling, Jing Tang, Guo-Kun Liu, Cheng Zong Dec 2019

Transient Electrochemical Surface-Enhanced Raman Spectroscopic Study In Electrochemical Reduction Of P-Nitrothiophenol, Yun Ling, Jing Tang, Guo-Kun Liu, Cheng Zong

Journal of Electrochemistry

P-nitrothiophenol (PNTP) is one of the most common probe molecules studied by surface-enhanced Raman spectroscopy (SERS). The research in electrochemical reduction behavior of PNTP will help understanding the mechanism for the nitrobenzene reduction. In this paper, we used transient electrochemical surface-enhanced Raman spectroscopy (TEC-SERS) to study the SERS of PNTP with cyclic voltammetry and chronoamperometry on gold electrodes. The results show that the TEC-SERS provide a time resolution that equals the transient electrochemical methods, and we concluded that the reaction was so quick that we did not observe the spectral information of intermediate species described in the literatures with a …


Electrochemical Sensor Based On Magnetic Electrode Modified With Magnetic Molecularly Imprinted Nanoparticles Immobilized Hemoglobin For Determination Of Hydrogen Peroxide, Yang Yuan, Jia-Xin Wang, Yu-Hua Cao Dec 2019

Electrochemical Sensor Based On Magnetic Electrode Modified With Magnetic Molecularly Imprinted Nanoparticles Immobilized Hemoglobin For Determination Of Hydrogen Peroxide, Yang Yuan, Jia-Xin Wang, Yu-Hua Cao

Journal of Electrochemistry

In this work, the surface-imprinted technique was used to prepare magnetic hemoglobin (Hb) imprinted nanoparticles, using Fe3O4@SiO2 NPs as the carrier, Hb as the template molecule, and tetraethyl orthosilicate (TEOS) as the imprinted polymer monomer. The nanoparticles had a core-shell structure, with magnetic Fe3O4 NPs as the core and Hb imprinted polymers as the shell. Therefore, Hb could be concentrated and fixed on the surface of the magnetic imprinted nanoparticles (MMIPs NPs). Furthermore, MMIPs NPs were immobilized with chitosan (CS) on the surface of a magnetic electrode to constitute Hb enzyme-like biosensor …


Synthesis Of Vo2/Poly(Mma-Co-Dmemuabr) Antimicrobial/Thermochromic Dual-Functional Coating And Reactivity Ratios Study, Yixian Liu Nov 2019

Synthesis Of Vo2/Poly(Mma-Co-Dmemuabr) Antimicrobial/Thermochromic Dual-Functional Coating And Reactivity Ratios Study, Yixian Liu

Electronic Thesis and Dissertation Repository

Antimicrobial/thermochromic dual-functional coatings were successfully synthesized via UV-curing. The quaternary ammonium compound (QAC) N,N-dimethyl-N-{2-[(2-methylprop-2-enoyl)oxy]ethyl}undecane-1-aminium bromide (dMEMUABr) was synthesized and copolymerized with methyl methacrylate (MMA) for antimicrobial properties. Vanadium oxide (VO2) nanoparticles were evenly dispersed within the coating, providing thermochromic properties. The dual-functional coating showed high luminous transmittance (Tlum(25°C) =36.1 %) and solar energy modulation ( Tsol=5.8 %). 90.3 % of bacteria reduction was observed against Escherichia coli within 24 h contact. To further understand the sequence distribution of the copolymer poly(MMA-co-dMEMUABr), the reactivity ratios of MMA and dMEMUABr monomer were studied and compared under thermal …


Top-Down And Bottom-Up Fabrication Of Key Components In Miniature Energy Storage Devices, Wenhao Li Oct 2019

Top-Down And Bottom-Up Fabrication Of Key Components In Miniature Energy Storage Devices, Wenhao Li

Doctoral Dissertations

The advent of miniature electronic devices demands power sources of commensurate form factors. This spurs the research of micro energy storage devices, e.g., 3D microbatteries. A 3D microbattery contains nonplanar microelectrodes with high aspect ratio and high surface area, separated by a nanoscale electrolyte. The device takes up a total volume as small as 10 mm3, allowing it to serve on a chip and to provide power in-situ. The marriage of nanotechnology and electrochemical energy storage makes microbattery research a fascinating field with both scientific excitement and application prospect. However, successful fabrication of well-functioned key components …


Bioinspired Complex Nanoarchitectures By Dna Supramolecular Polymerization, Laura A. Lanier Oct 2019

Bioinspired Complex Nanoarchitectures By Dna Supramolecular Polymerization, Laura A. Lanier

Doctoral Dissertations

Bioinspired nanoarchitectures are of great interest for applications in fields such as nanomedicine, tissue engineering, and biosensing. With this interest, understanding how the physical properties of these complex nanostructures relate to their function is increasingly important. This dissertation describes the creation of complex nanoarchitectures with controlled structure and the investigation of the effect of nanocarrier physical properties on cell uptake for applications in nanomedicine. DNA self-assembly by supramolecular polymerization was chosen to create complex nanostructures of controlled architectures. We demonstrated that the supramolecular polymerization of DNA known as hybridization chain reaction (HCR) is in fact a living polymerization. The living …


Engineering Nanomaterials For Imaging And Therapy Of Bacteria And Biofilm-Associated Infections, Akash Gupta Oct 2019

Engineering Nanomaterials For Imaging And Therapy Of Bacteria And Biofilm-Associated Infections, Akash Gupta

Doctoral Dissertations

Infections caused by multidrug-resistant (MDR) bacteria pose a serious global burden of mortality, causing thousands of deaths each year. The “superbug” risk is further exacerbated by chronic infections generated from antibiotic-resistant biofilms that are highly resistant to available treatments. Synthetic macromolecules such as polymers and nanoparticles have emerged as promising antimicrobials. Moreover, ability to modulate nanomaterial interaction with bacterial cellular systems plays a pivotal role in improving the efficacy of the strategy. In the initial studies on engineering nanoparticle surface chemistry, I investigated the role played by surface ligands in determining the antimicrobial activity of the nanoparticles. In further study, …


Modeling And Simulation Of Driven Nanopatterning Of Bulk-Material And Thin-Film Surfaces, Ashish Kumar Oct 2019

Modeling And Simulation Of Driven Nanopatterning Of Bulk-Material And Thin-Film Surfaces, Ashish Kumar

Doctoral Dissertations

Material nanostructures such as nanowires, quantum dots, and nanorings have a wide variety of applications in electronic and photonic devices among numerous others. Assembling uniformly arranged and consistently sized nanostructure patterns on solid material surfaces is a major challenge for nanotechnology. This dissertation focuses on developing predictive models capable of simulation and analysis of such nanopattern formation on bulk material and strained thin film surfaces. Single-layer atomic clusters (islands) of sizes larger than a critical size on crystalline conducting substrates undergo morphological instabilities when driven by an externally applied electric field or thermal gradient. We have conducted a systematic and …


A Facile Route To Synthesize Pt-Wo3 Nanosheets With Enhanced Electrochemical Performance For Her, Peng-Jie Jiang, Yi Lv, Chang-Miao Chen, Hong-Cheng He, Yong Cai, Ming Zhang Oct 2019

A Facile Route To Synthesize Pt-Wo3 Nanosheets With Enhanced Electrochemical Performance For Her, Peng-Jie Jiang, Yi Lv, Chang-Miao Chen, Hong-Cheng He, Yong Cai, Ming Zhang

Journal of Electrochemistry

Platinum-tungsten trioxide (Pt-WO3) nanosheets were synthesized on nickel foams (NFs) directly. As great conductive networks, NFs substrates could greatly improve the electrode performance of WO3. The modified platinum nanoparticles not only enhanced the electron transformation of catalysts, but also increased the active sites for hydrogen evolution reaction (HER). Pt-WO3/NF revealed a better catalytic activity than WO3/NFs with a smaller Tafel slope (80 mV·dec-1) and a lower overpotential of 72 mV at the current density of 10 mA·cm-2. In addition, Pt-WO3/NF showed great durability and stability during …


Pd Nanoparticles Supported On The Etched Ni Foams As High-Performance Electrocatalysts For Direct Ethanol Fuel Cells, Chi Zhang, Cheng-Fei Li, Gao-Ren Li Oct 2019

Pd Nanoparticles Supported On The Etched Ni Foams As High-Performance Electrocatalysts For Direct Ethanol Fuel Cells, Chi Zhang, Cheng-Fei Li, Gao-Ren Li

Journal of Electrochemistry

The development of non-Pt anode electrocatalysts with high activity and long-term durability at low cost for fuel cells still remains enormous challenge. Here we report the Pd nanoparticles supported on Ni foams etched by the mixed acids (HNO3+H2SO4+H3PO4+CH3COOH) (Pd/ME-NF) that are designed and fabricated as high-performance electrocatalysts for ethanol oxidation in alkaline media. Because of the advantages of large open space, fast electrolyte penetration/diffusion and rapid electron transfer process, the Pd/ME-NF catalysts exhibited significantly improved electrocatalytic activity and durability compared with the commercial Pd/C catalysts.


Peptide Nanotube Encapsulated Enzyme Biosensor For Vapor Phase Detection Of Malathion, An Organophosphorus Compound, Christopher W. Edwards, Surachet Duanghathaipornsuk, Mark N. Goltz, Sushil Kanel, Dong-Shik Kim Sep 2019

Peptide Nanotube Encapsulated Enzyme Biosensor For Vapor Phase Detection Of Malathion, An Organophosphorus Compound, Christopher W. Edwards, Surachet Duanghathaipornsuk, Mark N. Goltz, Sushil Kanel, Dong-Shik Kim

Faculty Publications

This study explores the use of a butyrylcholinesterase (BChE)-based, reversible reaction biosensor using screen-printed electrodes (SPEs) having a smaller working surface area than the single-use electrodes previously studied. Previous research demonstrated the prospective application of a single-use biosensor fabricated with an acetylcholinesterase (AChE) enzyme encapsulated in peptide nanotubes (PNTs) and enhanced with horseradish peroxidase (HRP) to detect organophosphorus compounds (OPCs) in aqueous and gas phases. In the current study, potential improvements to the biosensor are investigated. BChE-based biosensors were fabricated using PNTs, HRP, and Nafion in combination to increase the reactive surface area, enhance sensitivity, and maintain enzyme stability. Cyclic …


Roles Of Surfactant And Binary Polymers On Dissolution Enhancement Of Bcs Ii Drugs From Nanocomposites And Amorphous Solid Dispersions, Md Mahbubur Rahman Aug 2019

Roles Of Surfactant And Binary Polymers On Dissolution Enhancement Of Bcs Ii Drugs From Nanocomposites And Amorphous Solid Dispersions, Md Mahbubur Rahman

Dissertations

Drug nanocomposites and amorphous solid dispersions (ASDs) are two major formulation platforms used for the bioavailability enhancement of BCS Class II drugs. The major drawback of nanocomposites is their inability to attain high drug supersaturation during in vitro (<50% relative supersaturation) and in vivo dissolution. On the other hand, formulating an amorphous solid dispersion (ASD) with high drug loading (>20%) that releases drug rapidly, while generating and maintaining high supersaturation over at least three hours is challenging. The goal of this thesis is to develop a fundamental understanding of the impact of anionic surfactants–polymers on in vitro drug release from nanocomposites and ASDs, while addressing the above challenges. To achieve this goal, the following objectives are set: (1) compare griseofulvin …


Enzymatic Biofuel Cells In A Sandwich Geometry With Compressed Carbon Nanotubes/Enzyme Electrodes & Hybrid Patch Applications, Biao Leng Aug 2019

Enzymatic Biofuel Cells In A Sandwich Geometry With Compressed Carbon Nanotubes/Enzyme Electrodes & Hybrid Patch Applications, Biao Leng

Dissertations

Enzymatic biofuel cells (EBFCs) convert the chemical energy of biofuels, such as glucose and methanol, into electrical energy by employing enzymes as catalysts. In contrast to conventional fuel cells, EBFCs have a simple membrane-free fuel cell design due to the high catalytic specificity of the enzymes, but the power densities obtained are lower. Although the primary goal of research on EBFCs has been to develop a sustainable power source that can be directly implanted in the human body to power bio-devices, other applications such as the use of a flexible film or fuel cell patch as a wearable power source …


Regulation Of Copper Surface Via Redox Reactions For Enhancing Carbon Dioxide Electroreduction, Bao-Hua Hang, Jin-Tao Zhang Aug 2019

Regulation Of Copper Surface Via Redox Reactions For Enhancing Carbon Dioxide Electroreduction, Bao-Hua Hang, Jin-Tao Zhang

Journal of Electrochemistry

A large-scale application of fossil fuels has led to excessive emission of carbon dioxide (CO2), resulting in serious environmental issues. A promising path to reducing CO2 emissions is recycling CO2 into valuable chemicals and fuels through an electrochemical process. Herein, the redox reactions between copper (Cu) and ferric chloride (FeCl3) have been utilized to regulate the Cu surface composition and structure, aimed to improve the electrocatalytic activity toward CO2 reduction. Typically, a series of samples (named Cu-1h, Cu-2h, Cu-3h and Cu-4h) were prepared via the redox reactions for various time from 1 to …


Effect Of Morphology Of Fe-N Codoped Carbon Nanomaterial On Electrochemical Reduction Reactions, Er-Ling Li, Fa Yang, Ming-Bo Ruan, Ping Song, Wei-Lin Xu Aug 2019

Effect Of Morphology Of Fe-N Codoped Carbon Nanomaterial On Electrochemical Reduction Reactions, Er-Ling Li, Fa Yang, Ming-Bo Ruan, Ping Song, Wei-Lin Xu

Journal of Electrochemistry

Graphene nanosheets (GS) and carbon nanotubes have been considered as good catalysts candidates for applications in energy conversion and storage. However, hybrids of GS and carbon nanotubes are always formed in transition metal-based nitrogen-doped system, making the system quite complex for exploring the structure-activity relationship. To prepare the catalysts with desired species controllably, we try to adjust the outcomes with the effect of nitrogen on the growth of carbon nanotubes. In this work, a series of Fe-N co-doped carbon hybrid catalysts containing N-doped GS or hybrids of GS/bamboo carbon nanotubes (BCNTs) or BCNTs were obtained with one-step pyrolyzed method. To …


A Study Of Protein And Peptide-Directed Nanoparticle Synthesis For Catalytic Materials, Abdollah Mosleh Aug 2019

A Study Of Protein And Peptide-Directed Nanoparticle Synthesis For Catalytic Materials, Abdollah Mosleh

Graduate Theses and Dissertations

Nanoparticles have received much attentions due to their unique properties that makes them suitable candidates for a broad range of applications. As the size of particles decreases, their surface area-to-volume ratio would increase which is the main cause of much attention. In addition to the size, their morphologies and compositions may also play important roles for defining unique properties. Nanoparticle synthesis include both bottom-up and top-down strategies. To control the process of inorganic nanoparticles synthesis one could follow the bottom-up approach to have atom-level control over their compositions, morphologies, phases, and sizes which is the subject of this work. Due …


Rheological Investigations Of Self-Assembled Block Copolymer Nanocomposites With Complex Architectures, Benjamin Yavitt Jul 2019

Rheological Investigations Of Self-Assembled Block Copolymer Nanocomposites With Complex Architectures, Benjamin Yavitt

Doctoral Dissertations

The self-assembly of block copolymers (BCP) into microphase separated structures is an attractive route to template and assemble functional nanoparticles (NP) into highly ordered nanocomposites and is central to the “bottom up” fabrication of future materials with tunable electronic, optical, magnetic, and mechanical properties. The optimization of the co-assembly requires an understanding of the fundamentals of phase behavior, intermolecular interactions and dynamics of the polymeric structure. Rheology is a novel characterization tool to investigate these processes in such systems that are not accessible by other means. With the combination of X-ray scattering techniques, structure-property relationships are determined as a function …


Electrocatalytic Nanomaterials For Reduction Of Hydrogen Peroxide As Potential Radioprotectors, Rui-Hong Jia, Jin-Xuan Zhang, Xiao-Dong Zhang, Mei-Xian Li Jun 2019

Electrocatalytic Nanomaterials For Reduction Of Hydrogen Peroxide As Potential Radioprotectors, Rui-Hong Jia, Jin-Xuan Zhang, Xiao-Dong Zhang, Mei-Xian Li

Journal of Electrochemistry

Nanomaterials have shown many potential application prospects in the biomedical field, such as medical imaging, drug delivery and biosensing due to their unique physical and chemical properties. In this review we focus on nanomaterials that have shown not only abilities of radiation protection, but also good electrocatalytic activities toward reduction reactions of hydrogen peroxide and oxygen. We discuss the abilities of radiation protection of these nanomaterials that are ascribed to their enzyme-like activities because their catalytic properties provide an effective pathway for scavenging free radicals in vivo via rapid reactions with reactive oxygen species. We also provide insights into electrocatalytic …


Composite Membranes Derived From Cellulose And Lignin Sulfonate For Selective Separations And Antifouling Aspects, Andrew Steven Colburn, Ronald J. Vogler, Aum Patel, Mariah Bezold, John D. Craven, Chunqing Liu, Dibakar Bhattacharyya Jun 2019

Composite Membranes Derived From Cellulose And Lignin Sulfonate For Selective Separations And Antifouling Aspects, Andrew Steven Colburn, Ronald J. Vogler, Aum Patel, Mariah Bezold, John D. Craven, Chunqing Liu, Dibakar Bhattacharyya

Chemical and Materials Engineering Faculty Publications

Cellulose-based membrane materials allow for separations in both aqueous solutions and organic solvents. The addition of nanocomposites into cellulose structure is facilitated through steric interaction and strong hydrogen bonding with the hydroxy groups present within cellulose. An ionic liquid, 1-ethyl-3-methylimidazolium acetate, was used as a solvent for microcrystalline cellulose to incorporate graphene oxide quantum dots into cellulose membranes. In this work, other composite materials such as, iron oxide nanoparticles, polyacrylic acid, and lignin sulfonate have all been uniformly incorporated into cellulose membranes utilizing ionic liquid cosolvents. Integration of iron into cellulose membranes resulted in high selectivity (> 99%) of neutral …


Group Iv Environmentally Benign, Inexpensive Semiconductor Nanomaterials For Solar Cells, Lisa Je Jun 2019

Group Iv Environmentally Benign, Inexpensive Semiconductor Nanomaterials For Solar Cells, Lisa Je

ENGS 86 Independent Projects (AB Students)

Modern solar cells are composed of silicon, cadmium tellurium, and copper indium gallium diselenide. While these materials are efficient, elements such as cadmium and indium are rare and expensive. To make this renewable energy source more inexpensive and sustainable, the Liu Optics lab is substituting expensive rare earth metals for more commonly found transition state metals. Work has been done to replace the solar cell layers composed of cadmium and gallium to replace them with glass, silicon, and/or thin films. Common metals such as germanium and tin are investigated and characterized to provide a platform for solar cell components.


Nano-Enhanced Composite Membranes For Water Desalination, Benjamin Fredrik Victor Sundling Von Fürstenrecht Jun 2019

Nano-Enhanced Composite Membranes For Water Desalination, Benjamin Fredrik Victor Sundling Von Fürstenrecht

Materials Engineering

In theory single walled carbon nanotubes (SWCNT) will aid in ion rejection due hydrophobicity and smoothness of the SWCNT. An efficient means of water desalination utilizing SWCNT in a membrane seems plausible. A lyotropic liquid crystal (LLC) solution was made with a synthesized polymerizable surfactant methacryloxy ethyl hexadecyl dimethyl ammonium bromide (C16MA) to help with vertical alignment of SWCNT. Due to SWCNT lack of solubility and tendency to agglomerate in water, a dispersion performed using an inert surfactant centrimonium bromide (CTAB) to make sure that the SWCNT were homogeneously dispersed in the solution without altering the hexagonal packing factor of …


Highly Effective Geni Alloy Contact Diffusion Barrier For Bisbte Long-Term Thermal Exposure, Erdong Song, Brian S. Swartzentruber, Chowdary R. Koripella, Julio A. Martinez May 2019

Highly Effective Geni Alloy Contact Diffusion Barrier For Bisbte Long-Term Thermal Exposure, Erdong Song, Brian S. Swartzentruber, Chowdary R. Koripella, Julio A. Martinez

Publications and Research

A GeNi alloy diffusion barrier for contacts on bismuth antimony telluride is proposed. Multiple gold contact diffusion barriers were tested at different thermal aging conditions in air and reducing atmospheres. Among all diffusion barriers, the GeNi alloy barrier shows the best performance for bulk samples with no substantial degradation of the contact resistance, no contact color change, and no change of thermoelectric properties. We observed DAu−GeNi = (9.8 ± 2.7) × 10−20 m2/s within the GeNi alloy barrier, which is 4 times smaller than DAu−BiSbTe. The presence of the initial Ge layer also proves to be effective in reducing nickel …


A Ph-Sensitive Delivery System For The Prevention Of Dental Caries Using Salivary Proteins, Yi Zhu May 2019

A Ph-Sensitive Delivery System For The Prevention Of Dental Caries Using Salivary Proteins, Yi Zhu

Electronic Thesis and Dissertation Repository

Dental caries remains one of the most common chronic diseases worldwide. Salivary proteins such as histatins have demonstrated biological functions directly related to tooth homeostasis and prevention of dental caries. However, histatins are susceptible to the high proteolytic activities in the oral environment. Therefore, pH-sensitive chitosan nanoparticles (CNs) have been proposed as potential carriers to target major oral diseases that occur under acidic conditions (e.g. dental caries and dental erosion). Four different types of chitosan polymers were investigated and the optimized CNs successfully loaded histatin 3 and released it selectively under acidic conditions. Through loading the survival time of histatin …


Development Of A Ws2 Catalyst For Hydrogen Evolution And Improvement Via Platinum Nanoparticle Decoration, Alexander O'Brien May 2019

Development Of A Ws2 Catalyst For Hydrogen Evolution And Improvement Via Platinum Nanoparticle Decoration, Alexander O'Brien

Chemical Engineering Undergraduate Honors Theses

In response to a growing global need to improve utilization of green energy, the concept of renewable energy storage via electrolytic hydrogen production has gained popularity in recent years. However, the prohibitive expense of the bulk platinum catalysts currently used for the hydrogen evolution reaction prevents such a concept from being widely adoptable. This research focuses on a possible alternative catalyst, nanolayer WS2, which is capable of promoting the hydrogen evolution reaction while maintaining economic viability. Bulk WS2 was prepared in semiconducting, nanolayer form through liquid phase exfoliation. Prepared catalyst inks consisting of this material demonstrated successful …


Self-Assembled Nanoantenna Enhance Optical Activity And Transport In Scalable Thin Films And Interfaces, Keith Richard Berry Jr. May 2019

Self-Assembled Nanoantenna Enhance Optical Activity And Transport In Scalable Thin Films And Interfaces, Keith Richard Berry Jr.

Graduate Theses and Dissertations

Continued population growth and the decrease of existing energy platforms demands long-term solutions for development and implementation of scalable plasmonic metamaterials for energy and agricultural applications. Self-assembled nanoantenna into random and ordered arrangements are advanced herein for optical and thermal enhancements in scalable thin film. An analytical approach to estimating the thermal dynamics of random arrangements of nanoantenna resulted in estimates within 30% across a range of geometric parameters, nanoantenna-containing media, and thermal parameters. Multimodal thermal dynamics of polymer thin films containing gold nanoparticles (AuNPs) were observed through the natural log of the dimensionless temperature driving force plotted versus time …


Iron-Containing Nanoparticles For The Treatment Of Chrionic Biofilm Infections In Cystic Fibrosis, Leisha M. A. Martin Apr 2019

Iron-Containing Nanoparticles For The Treatment Of Chrionic Biofilm Infections In Cystic Fibrosis, Leisha M. A. Martin

Nanoscience and Microsystems ETDs

Cystic fibrosis (CF) is the most common genetic disease resulting in the morbidity and mortality of Caucasian children and adults worldwide. Due to a genetic mutation resulting in malfunction of the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) protein, CF patients produce highly viscous mucus in their respiratory tract. This leads to impairment of the mucociliary clearance of inhaled microbes. In addition to reduced microbial clearance, anoxic environmental conditions in the lungs promote biofilm-mode growth of the pathogenic bacterial species Pseudomonas aeruginosa. Chronic infections of P. aeruginosa begin in early childhood and typically persist until respiratory failure and death result. The …


Microwave And Ultrasonic Assisted Synthesis Of Zeolites From Coal Fly Ash In Batch And Circulating Batch Operation, Tahani Hassn Aldahri Apr 2019

Microwave And Ultrasonic Assisted Synthesis Of Zeolites From Coal Fly Ash In Batch And Circulating Batch Operation, Tahani Hassn Aldahri

Electronic Thesis and Dissertation Repository

This research was focused on the production of zeolites from CFA throughutilizing ultrasound and microwave power. The initial conventional heating process of 6 h prior to microwave irradiation for samples with high solid-to-liquid (S/L) ratio (CFA mass/ NaOH solution volume) led to a higher yield of zeolite and decreased the synthesis time and consumption of energy,while keeping the high quality of the synthesized zeolite intact. The crystal growth of the nuclei generated over 6 h of conventional hydrothermal treatment was enhanced by the post-microwave heating. Ultrasound-assisted zeolitizationCFA was also applied in this research.

When ultrasound energy was applied after hydrothermal …


Recent Developments In Surface/Interface Modulation And Structure-Performance Relationship Of Cathode Catalysts For Li-Air Batteries, Rui Gao, Jun-Kai Wang, Zhong-Bo Hu, Xiang-Feng Liu Feb 2019

Recent Developments In Surface/Interface Modulation And Structure-Performance Relationship Of Cathode Catalysts For Li-Air Batteries, Rui Gao, Jun-Kai Wang, Zhong-Bo Hu, Xiang-Feng Liu

Journal of Electrochemistry

Lithium-air battery has been considered to be one of the most promising secondary battery systems because of its high energy density. However, the sluggish kinetics of the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) on the cathode, and the high overpotential, poor cycle stability and low rate capacity have severely blocked the development and application of Li-air battery. One of the effective strategies to alleviate these issues is to develop cathode catalysts for Li-air batteries. The design and development of bifunctional cathode catalysts with high activity and efficiency on both ORR and OER is highly desired for Li-air …


Effect Of Crystallization Modes In Tips-Pentacene/Insulating Polymer Blends On The Gas Sensing Properties Of Organic Field-Effect Transistors, Jung Hun Lee, Yena Seo, Yeong Don Park, John E. Anthony, Do Hun Kwak, Jung Ah Lim, Sunglim Ko, Ho Won Jang, Kilwon Cho, Wi Hyoung Lee Jan 2019

Effect Of Crystallization Modes In Tips-Pentacene/Insulating Polymer Blends On The Gas Sensing Properties Of Organic Field-Effect Transistors, Jung Hun Lee, Yena Seo, Yeong Don Park, John E. Anthony, Do Hun Kwak, Jung Ah Lim, Sunglim Ko, Ho Won Jang, Kilwon Cho, Wi Hyoung Lee

Center for Applied Energy Research Faculty and Staff Publications

Blending organic semiconductors with insulating polymers has been known to be an effective way to overcome the disadvantages of single-component organic semiconductors for high-performance organic field-effect transistors (OFETs). We show that when a solution processable organic semiconductor (6,13-bis(triisopropylsilylethynyl)pentacene, TIPS-pentacene) is blended with an insulating polymer (PS), morphological and structural characteristics of the blend films could be significantly influenced by the processing conditions like the spin coating time. Although vertical phase-separated structures (TIPS-pentacene-top/PS-bottom) were formed on the substrate regardless of the spin coating time, the spin time governed the growth mode of the TIPS-pentacene molecules that phase-separated and crystallized on the …


Towards The Rational Design And Application Of Polymers For Gene Therapy: Internalization And Intracellular Fate, Landon Alexander Mott Jan 2019

Towards The Rational Design And Application Of Polymers For Gene Therapy: Internalization And Intracellular Fate, Landon Alexander Mott

Theses and Dissertations--Chemical and Materials Engineering

Gene therapy is an approach for the treatment of acquired cancers, infectious disease, degenerative disease, and inherited genetic indications. Developments in the fields of immunotherapies and CRISPR/Cas9 genome editing are revitalizing the efforts to move gene therapy to the forefront of modern medicine. However, slow progress and poor clinical outcomes have plagued the field due to regulatory and safety concerns associated with the flagship delivery vector, the recombinant virus. Immunogenicity and poor transduction in certain cell types severely limits the utility of viruses as a delivery agent of nucleic acids. As a result, significant efforts are being made to develop …


The Fabrication And Characterization Of Metal Oxide Nanoparticles Employed In Environmental Toxicity And Polymeric Nanocomposite Applications, Matthew Logan Hancock Jan 2019

The Fabrication And Characterization Of Metal Oxide Nanoparticles Employed In Environmental Toxicity And Polymeric Nanocomposite Applications, Matthew Logan Hancock

Theses and Dissertations--Chemical and Materials Engineering

Ceria (cerium oxide) nanomaterials, or nanoceria, have commercial catalysis and energy storage applications. The cerium atoms on the surface of nanoceria can store or release oxygen, cycling between Ce3+ and Ce4+, and can therefore act as a therapeutic to relieve oxidative stress within living systems. Nanoceria dissolution is present in acidic environments in vivo. In order to accurately define the fate of nanoceria in vivo, nanoceria dissolution or stabilization is observed in vitro using acidic aqueous environments.

Nanoceria stabilization is a known problem even during its synthesis; in fact, a carboxylic acid, citric acid, is …