Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Atomic, Molecular and Optical Physics

Titanium nitride

Publication Year

Articles 1 - 3 of 3

Full-Text Articles in Nanoscience and Nanotechnology

Nanoparticle Plasmonics: Going Practical With Transition Metal Nitrides, U. Guler, V. M. Shalaev, A. Boltasseva Apr 2015

Nanoparticle Plasmonics: Going Practical With Transition Metal Nitrides, U. Guler, V. M. Shalaev, A. Boltasseva

U. Guler

Promising designs and experimental realizations of devices with unusual properties in the field of plasmonics have attracted a great deal of attention over the past few decades. However, the high expectations for realized technology products have not been met so far. The main complication is the absence of robust, high performance, low cost plasmonic materials that can be easily integrated into already established technologies such as microelectronics. This review provides a brief discussion on alternative plasmonic materials for localized surface plasmon applications and focuses on transition metal nitrides, in particular, titanium nitride, which has recently been shown to be a …


Plasmonics On The Slope Of Enlightenment: The Role Of Transition Metal Nitrides, U. Guler, A. Kildishev, A. Boltasseva, V. Shalaev Jan 2015

Plasmonics On The Slope Of Enlightenment: The Role Of Transition Metal Nitrides, U. Guler, A. Kildishev, A. Boltasseva, V. Shalaev

U. Guler

The key problem currently faced by plasmonics is related to material limitations. After almost two decades of extreme excitement and research largely based on the use of noble metals, scientists have come to a consensus on the importance of exploring alternative plasmonic materials to address application-specific challenges to enable the development of new functional devices. Such a change in motivation will undoubtedly lead to significant advancements in plasmonics technology transfer and could have a revolutionary impact on nanophotonic technologies in general. Here, we report on one of the approaches that, together with other new material platforms, mark an insightful technology-driven …


Performance Analysis Of Nitride Alternative Plasmonic Materials For Localized Surface Plasmon Applications, U. Guler, Gururaj V. Naik, Alexandra Boltasseva, Vladimir M. Shalaev, Alexander V. Kildishev Apr 2012

Performance Analysis Of Nitride Alternative Plasmonic Materials For Localized Surface Plasmon Applications, U. Guler, Gururaj V. Naik, Alexandra Boltasseva, Vladimir M. Shalaev, Alexander V. Kildishev

U. Guler

We consider methods to define the performance metrics for different plasmonic materials to be used in localized surface plasmon applications. Optical efficiencies are shown to be better indicators of performance as compared to approximations in the quasistatic regime. The near-field intensity efficiency, which is a generalized form of the well-known scattering efficiency, is a more flexible and useful metric for local-field enhancement applications. We also examine the evolution of the field enhancement from a particle surface to the far-field regime for spherical nanoparticles with varying radii. Titanium nitride and zirconium nitride, which were recently suggested as alternative plasmonic materials in …