Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Nanoscience and Nanotechnology

Direct Current Electrokinetic Particle Transport In Micro/Nano-Fluidics, Ye Ai Apr 2011

Direct Current Electrokinetic Particle Transport In Micro/Nano-Fluidics, Ye Ai

Mechanical & Aerospace Engineering Theses & Dissertations

Electrokinetics has been widely used to propel and manipulate particles in micro/nano-fluidics. The first part of this dissertation focuses on numerical and experimental studies of direct current (DC) electrokinetic particle transport in microfluidics, with emphasis on dielectrophoretic (DEP) effect. Especially, the electrokinetic transports of spherical particles in a converging-diverging microchannel and an L-shaped microchannel, and cylindrical algal cells in a straight microchannel have been numerically and experimentally studied. The numerical predictions are in quantitative agreement with our own and other researchers' experimental results. It has been demonstrated that the DC DEP effect, neglected in existing numerical models, plays an ...


Manipulating Particles For Micro- And Nano-Fluidics Via Floating Electrodes And Diffusiophoresis, Sinan Eren Yalcin Apr 2011

Manipulating Particles For Micro- And Nano-Fluidics Via Floating Electrodes And Diffusiophoresis, Sinan Eren Yalcin

Mechanical & Aerospace Engineering Theses & Dissertations

The ability to accurately control micro- and nano-particles in a liquid is fundamentally useful for many applications in biology, medicine, pharmacology, tissue engineering, and microelectronics. Therefore, first particle manipulations are experimentally studied using electrodes attached to the bottom of a straight microchannel under an imposed DC or AC electric field. In contrast to a dielectric microchannel possessing a nearly-uniform surface charge, a floating electrode is polarized under the imposed electric field.

The purpose is to create a non-uniform distribution of the induced surface charge, with a zero-net-surface charge along the floating electrode's surface. Such a field, in turn, generates ...