Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Nanoscience and Nanotechnology

Carbon Fibers From Bio-Based Precursors Derived From Renewable Sources, Sagar Kanhere Dec 2022

Carbon Fibers From Bio-Based Precursors Derived From Renewable Sources, Sagar Kanhere

All Dissertations

Carbon fibers have the highest strength and modulus among all known fibers and are used as reinforcements in high-performance composites [1]. Carbon fibers also have a very low density relative to metals. Therefore, carbon fibers possess ultrahigh specific strength and modulus, which make them desirable for high-performance light-weight composites. A vast majority of commercial carbon fibers are produced from PAN precursors that are expensive, which limits the use of PAN-derived carbon fibers to aerospace applications (e.g., airplanes). However, for costsensitive applications, there is a need for low-cost, moderate performance carbon fibers. Lignin is a low-cost by-product of pulping and biorefining …


Carbon Nanotube-Based Microscale Capacitive Flow Sensors, Nathaniel Holmes Jun 2022

Carbon Nanotube-Based Microscale Capacitive Flow Sensors, Nathaniel Holmes

Electronic Thesis and Dissertation Repository

Micro-scale flow sensors present several advantages over traditional flow sensing
methods, including minimal flow disruption, high spatial resolution, and low unit
cost. Many existing micro-scale thermal and piezo flow sensors struggle with temperature drift and require complicated fabrication processes. This thesis details
the development of a 60 μm by 60 μm by 50 μm drag-based capacitive flow sensor
constructed from vertically aligned carbon nanotube forests. The construction
of a thermal chemical vapour deposition system for sensor synthesis is also de-
tailed. Manual manipulation of the sensor with an atomic force microscope probe
was found to produce a full scale signal …


Uv Space Imager Enclosure Coating, David Silva Cortez, Victor Alexander Rempel Dekhtyar, Maria L. Muñoz Jun 2022

Uv Space Imager Enclosure Coating, David Silva Cortez, Victor Alexander Rempel Dekhtyar, Maria L. Muñoz

Mechanical Engineering

The goal of this project is to reduce the amount of stray light entering an ultraviolet (UV) imager through absorption. This report outlines the use of ZnO nanoparticles mixed in an epoxy matrix for use in a CubeSat enclosure. Through testing, our team verified that the ZnO and epoxy coating experienced a peak absorption between 360-370 nm. The epoxy mixture with the .75% by weight ZnO nanoparticles absorbed up to 99.9 % of UV light at its peak. The effect on material properties, such as Young’s modulus and ultimate tensile strength, was also tested. Tensile tests demonstrated that adding ZnO …


Thermal Management Using Liquid-Vapor Phase Change In Nanochannels, Sajag Poudel May 2022

Thermal Management Using Liquid-Vapor Phase Change In Nanochannels, Sajag Poudel

Dissertations - ALL

Superior wettability of porous medium marks their potential to be used in the field of thermal management employing phase-change heat transfer. Comprehending the phenomena of wicking and liquid-vapor phase-change in micro/nano structured surfaces are key aspects towards advancing heat transfer solutions. In this work, fundamental understanding of droplet wicking, thin-film evaporation, and their subsequent application of heat-flux removal for cooling technology is first reported. The latter part of the dissertation is related to the disjoining pressure driven flow of nanoscale liquid film and liquid-vapor phase change in nano confinement. First, experimental and numerical investigation of droplet wicking in ∼728 nm …