Open Access. Powered by Scholars. Published by Universities.®

Mining Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Mining Engineering

Using Coupled Eulerian And Lagrangian Grids To Model Explosive Interactions With Buildings, Braden Lusk, William P. Schonberg, Jason Baird, Robert S. Woodley, Warren Noll Nov 2006

Using Coupled Eulerian And Lagrangian Grids To Model Explosive Interactions With Buildings, Braden Lusk, William P. Schonberg, Jason Baird, Robert S. Woodley, Warren Noll

Mining and Nuclear Engineering Faculty Research & Creative Works

This paper presents the development of a computational model that can be used to study the interactions between structures and detonating explosives contained within them. This model was developed as part of an effort to develop a rubble characterization model for use in AmmoSIM, an agent based urban tactical decision aid (UTDA) software for weapon-target pairing. The rubble pile created following the collapse of a building in a combat situation can significantly impact mission accomplishment, particularly in the area of movement and maneuver. The information provided by AmmoSIM will enable both platoon level and command center staff to make informed ...


New Concept For Constructing An Autonomous Completely Explosive Pulsed Power System: Transverse Shock Wave Ferromagnetic Primary Power Source And Loop Flux Compression Amplifier, Sergey I. Shkuratov, Evgueni F. Talantsev, Jason Baird, Allen H. Stults, Larry L. Altgilbers Nov 2006

New Concept For Constructing An Autonomous Completely Explosive Pulsed Power System: Transverse Shock Wave Ferromagnetic Primary Power Source And Loop Flux Compression Amplifier, Sergey I. Shkuratov, Evgueni F. Talantsev, Jason Baird, Allen H. Stults, Larry L. Altgilbers

Mining and Nuclear Engineering Faculty Research & Creative Works

A new design idea for a compact, autonomous, completely explosive pulsed power system is proposed. The system is based on the shock wave ferromagnetic generator (FMG) as a primary power source and a loop magnetic flux compression generator (LFCG) as a pulsed power amplifier. The FMG primary power source utilizes the effect of transverse shock wave demagnetization of Nd2Fe14B high-energy hard ferromagnets to produce the seed current. Results are presented of an experimental study and digital simulation of operation of the FMG-LFCG system


Transverse Explosive Shock-Wave Compression Of Nd₂Fe₁₄B High-Energy Hard Ferromagnets: Induced Magnetic Phase Transition, Sergey I. Shkuratov, Evgueni F. Talantsev, Jason Baird, Larry L. Altgilbers, Allen H. Stults Jan 2006

Transverse Explosive Shock-Wave Compression Of Nd₂Fe₁₄B High-Energy Hard Ferromagnets: Induced Magnetic Phase Transition, Sergey I. Shkuratov, Evgueni F. Talantsev, Jason Baird, Larry L. Altgilbers, Allen H. Stults

Mining and Nuclear Engineering Faculty Research & Creative Works

Investigations of the magnetic phase state of Nd2Fe14B high-energy hard ferromagnets under the action of an explosive shock wave traveling across the magnetization vector, M, have been performed. We demonstrate that the transverse shock-wave compression of an Nd2Fe14B hard ferromagnet with pressure at the shock wave front of P = 22.3 GPa causes a hard ferromagnet — to — weak magnet phase transition. Due to this phase transition, the magnetostatic energy stored for an indefinite period of time in the Nd2Fe14B ferromagnet is released within a short time interval and can be transformed into pulsed primary power. Based on this effect we ...


Longitudinal Shock Wave Depolarization Of Pb(Zr₅₂Ti₄₈)O₃ Polycrystalline Ferroelectrics And Their Utilization In Explosive Pulsed Power, Sergey I. Shkuratov, Evgueni F. Talantsev, Jason Baird, Henryk Temkin, Larry L. Altgilbers, Allen H. Stults Jan 2006

Longitudinal Shock Wave Depolarization Of Pb(Zr₅₂Ti₄₈)O₃ Polycrystalline Ferroelectrics And Their Utilization In Explosive Pulsed Power, Sergey I. Shkuratov, Evgueni F. Talantsev, Jason Baird, Henryk Temkin, Larry L. Altgilbers, Allen H. Stults

Mining and Nuclear Engineering Faculty Research & Creative Works

A poled lead zirconate titanate Pb(Zr52Ti48)O3 (PZT) polycrystalline piezoelectric ceramic energy-carrying element of a compact explosive-driven power generator was subjected to a longitudinal explosive shock wave (the wave front traveled along the polarization vector P0). The shock compression of the element at pressures of 1.5-3.8 GPa caused almost complete depolarization of the sample. Shock wave velocity in the PZT was determined to be 3.94 ± 0.27 km/s. The electric charge stored in a ferroelectric, due to its remnant polarization, is released during a short time interval and can be transformed into pulsed power. Compact ...


Completely Explosive Autonomous High-Voltage Pulsed-Power System Based On Shockwave Ferromagnetic Primary Power Source And Spiral Vector Inversion Generator, Sergey I. Shkuratov, Evgueni F. Talantsev, Jason Baird, Millard F. Rose, Zachary Shotts, Z. Roberts, Allen H. Stults, Larry L. Altgilbers Jan 2006

Completely Explosive Autonomous High-Voltage Pulsed-Power System Based On Shockwave Ferromagnetic Primary Power Source And Spiral Vector Inversion Generator, Sergey I. Shkuratov, Evgueni F. Talantsev, Jason Baird, Millard F. Rose, Zachary Shotts, Z. Roberts, Allen H. Stults, Larry L. Altgilbers

Mining and Nuclear Engineering Faculty Research & Creative Works

Novel explosive and conventional pulsed-power technologies were combined, and a series of explosive-driven high-voltage power supplies was designed, built, and tested. The power supply contained an explosive-driven high-voltage primary power source based on the fundamental physical effect of shockwave demagnetization of Nd2 Fe14B high-energy ferromagnet and a power-conditioning stage. The volume of the energy-carrying ferromagnetic elements in the shockwave ferromagnetic generators (FMGs) was 8.75 cm3. The power-conditioning stage was based on the spiral vector inversion generator (VIG). The combined FMG-VIG system demonstrated successful operation and good performance. The output-voltage pulse amplitude of the combined FMG-VIG ...


Pulse Charging Of Capacitor Bank By Explosive-Driven Shock Wave Ferroelectric Generator, Sergey I. Shkuratov, Evgueni F. Talantsev, Jason Baird, Allen H. Stults, Larry L. Altgilbers Jan 2006

Pulse Charging Of Capacitor Bank By Explosive-Driven Shock Wave Ferroelectric Generator, Sergey I. Shkuratov, Evgueni F. Talantsev, Jason Baird, Allen H. Stults, Larry L. Altgilbers

Mining and Nuclear Engineering Faculty Research & Creative Works

Ultracompact explosive-driven shock wave ferroelectric generators (FEGs) were used as autonomous primary power sources for charging capacitor banks of different capacitance. The FEGs utilized longitudinal (when the shock wave propagates along the polarization vector P) shock wave depolarization of Pb(Zr52Ti48)O3 (PZT) polycrystalline ferroelectric ceramic. PZT disks having diameters ranging from 25 to 27 mm and three different thicknesses: 0.65, 2.1, and 5.1 mm. It was experimentally shown that during the charging process the FEGs were capable of producing pulsed power with peak amplitudes up to 0.3 MW. Results for charging ...


Completely Explosive Ultracompact High-Voltage Nanosecond Pulse-Generating System, Sergey I. Shkuratov, Evgueni F. Talantsev, Jason Baird, Millard F. Rose, Zachary Shotts, Larry L. Altgilbers, Allen H. Stults Jan 2006

Completely Explosive Ultracompact High-Voltage Nanosecond Pulse-Generating System, Sergey I. Shkuratov, Evgueni F. Talantsev, Jason Baird, Millard F. Rose, Zachary Shotts, Larry L. Altgilbers, Allen H. Stults

Mining and Nuclear Engineering Faculty Research & Creative Works

A conventional pulsed power technology has been combined with an explosive pulsed power technology to produce an autonomous high-voltage power supply. The power supply contained an explosive-driven high-voltage primary power source and a power-conditioning stage. The ultracompact explosive-driven primary power source was based on the physical effect of shock-wave depolarization of high-energy Pb(Zr52Ti48)O3 ferroelectric material. The volume of the energy-carrying ferroelectric elements in the shock-wave ferroelectric generators (SWFEGs) varied from 1.2 to 2.6 cm3. The power-conditioning stage was based on the spiral vector inversion generator (VIG). The SWFEG-VIG system demonstrated successful operation and good performance. The ...