Open Access. Powered by Scholars. Published by Universities.®

Mining Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Explosives Engineering

Geosciences and Geological and Petroleum Engineering Faculty Research & Creative Works

Articles 1 - 3 of 3

Full-Text Articles in Mining Engineering

Shockwave Interaction With A Cylindrical Structure, Phillip R. Mulligan Dec 2017

Shockwave Interaction With A Cylindrical Structure, Phillip R. Mulligan

Geosciences and Geological and Petroleum Engineering Faculty Research & Creative Works

An increased understanding of the shockwave interaction with a cylindrical structure is the foundation for developing a method to explosively seal a pipe similar to the Deepwater Horizon accident in the Gulf of Mexico. Shockwave interactions with a cylindrical structure have been a reoccurring focus of energetics research. Some of the most notable contributions of non-destructive tests are described in ``The Effects of Nuclear Weapons'' (Glasstone, 1962). The work presented by Glasstone examines shockwave interaction from a 20-megaton bomb with a cylindrical structure. However, the data is limited to a peak overpressure of less than 25 psi, requiring several miles ...


Explosively Formed Projectile Soft-Recovery Force Analysis, Laurin Bookout, Phillip R. Mulligan, Jason Baird Dec 2012

Explosively Formed Projectile Soft-Recovery Force Analysis, Laurin Bookout, Phillip R. Mulligan, Jason Baird

Geosciences and Geological and Petroleum Engineering Faculty Research & Creative Works

The design of a soft-recovery system is critical to a researcher's ability to analyze hypervelocity projectiles. The researcher may decide to use one method over another based on several criteria, including whether or not non-deformed projectile measurements are required. This report analyzes the forces two different soft-recovery methods impart on the projectiles collected. Method 1 utilized three polyethylene water barrels placed “end-to-end” horizontally, providing 2.6 meters (9 feet) of water to stop the projectile. Method 2 is a modification of the soft-recovery method utilized in “Soft-Recovery of Explosively Formed Penetrators” by Lambert and Pope. This method utilizes a ...


The Effects Of The Flyer Plate's Radius Of Curvature On The Performance Of An Explosively Formed Projectile, Phillip R. Mulligan, Jason Baird, Joshua Hoffman Jul 2012

The Effects Of The Flyer Plate's Radius Of Curvature On The Performance Of An Explosively Formed Projectile, Phillip R. Mulligan, Jason Baird, Joshua Hoffman

Geosciences and Geological and Petroleum Engineering Faculty Research & Creative Works

An explosively formed projectile (EFP) is known for its ability to penetrate vehicle armor effectively. Understanding how an EFP’s physical parameters affect its performance is crucial to development of armor capable of defeating such devices. The present study uses two flyer plate radii of curvature to identify the experimental effects of the flyer plate’s radius of curvature on the measured projectile velocity, depth of penetration, and projectile shape. The Gurney equation is an algebraic relationship for estimating the velocity imparted to a metal plate in contact with detonating explosives. The authors of this research used a form of ...