Open Access. Powered by Scholars. Published by Universities.®

Manufacturing Commons

Open Access. Powered by Scholars. Published by Universities.®

Robotics

Institution
Keyword
Publication Year
Publication
Publication Type

Articles 1 - 16 of 16

Full-Text Articles in Manufacturing

The Potential Of The Implementation Of Offline Robotic Programming Into Automation-Related Pedagogy, Max Rios Carballo, Xavier Brown Jun 2023

The Potential Of The Implementation Of Offline Robotic Programming Into Automation-Related Pedagogy, Max Rios Carballo, Xavier Brown

Publications and Research

In this study, the offline programming tool RoboDK is used to program industrial robots for the automation sector. The study explores the feasibility of using this non-disruptive robot programming software for classroom use; assesses how well RoboDK can be used to program various robots used in the industry; creates and tests various applications; and pinpoints technical obstacles that prevent a smooth link between offline programming and actual robots. Initial results indicate that RoboDK is an effective tool for deploying its offline programming code to a Universal Robot, UR3e. There are many potential for advanced applications. The goal of the project …


In-Situ Mechanical Tester, Andrrew Murach, Gustavo Marquez, Kosimo Tonn, Jake Vormbaum Jun 2023

In-Situ Mechanical Tester, Andrrew Murach, Gustavo Marquez, Kosimo Tonn, Jake Vormbaum

Mechanical Engineering

Over the course of the 2022-23 Cal Poly SLO school year, a small tensile tester device was developed specifically for Dr. Long Wang to test thin film materials under a microscope and generate accurate force versus displacement graphs. A tensile tester was manufactured using purchased and machined components, electronics were consolidated in a separate box and connected, and a program and user interface were written to control the motion, provide custom inputs, and organize useful data for the researcher. Tests were conducted to compare the performance of the device to universal tensile testers available in the Composites lab. The device …


Design And Fabrication Of A Force-Displacement Control Mechanism For Bone-Surgical Tool Testing, Kenneth Nwagu Jan 2023

Design And Fabrication Of A Force-Displacement Control Mechanism For Bone-Surgical Tool Testing, Kenneth Nwagu

Electronic Theses and Dissertations

This project focuses on the design and fabrication of an experimental setup for orthopedic-tool testing, tailored for a surgical instrumentation company. The multifaceted project encompasses a literature review, conceptual design, prototyping, and rigorous testing, resulting in a versatile control system capable of assessing various orthopedic tools, including bone drills, saws, burrs, and power handpieces.

Orthopedic surgical procedures (which include cutting and/or drilling into bone) often need to be performed on bones for faster recovery. The drilling and cutting process can cause an increase in temperature at the cutting site which can cause bone necrosis. The tools also need to be …


A Machine Learning Approach To Robotic Additive Manufacturing Of Uv-Curable Polymers Using Direct Ink Writing, Luis A. Velazquez Nov 2022

A Machine Learning Approach To Robotic Additive Manufacturing Of Uv-Curable Polymers Using Direct Ink Writing, Luis A. Velazquez

LSU Master's Theses

This thesis presents the design and implementation of a robotic additive manufacturing system that uses ultraviolet (UV)-curable thermoset polymers. Its design considers future applications involving free-standing 3D printing by means of partial UV curing and the fabrication of samples that are reinforced with fillers or fibers to manufacture complex-shape objects.

The proposed setup integrates a custom-built extruder with a UR5e collaborative manipulator. The capabilities of the system were demonstrated using Anycubic resin formulations containing fumed silica (FS) at varying weight fractions from 2.8 to 8 wt%. To fully cure the specimens after fabrication, a UV chamber was used. Then, measurements …


A Low-Cost And Low-Tech Solution To Test For Variations Between Multiple Offline Programming Software Packages., Steffen Wendell Bolz Apr 2022

A Low-Cost And Low-Tech Solution To Test For Variations Between Multiple Offline Programming Software Packages., Steffen Wendell Bolz

Masters Theses & Specialist Projects

This research paper chronicles the attempt to bring forth a low-cost and low-tech testing methodology whereby multiple offline programming (OLP) software packages’ generated programs may be compared when run on industrial robots. This research was initiated by the discovery that no real research exists to test between iterations of OLP software packages and that most research for positional accuracy and/or repeatability on industrial robots is expensive and technologically intensive. Despite this, many countries’ leaders are pushing for intensive digitalization of manufacturing and Small and Mediumsized Enterprises (SMEs) are noted to be lagging in adoption of such technologies. The research consisted …


Helical Dielectric Elastomer Actuator, Daewon Kim Aug 2021

Helical Dielectric Elastomer Actuator, Daewon Kim

Publications

A helical dielectric elastomer actuator (HDEA) can include a first dielectric region comprising an elastomer defining a helix. In an example, a dielectric material can be deposited, and a compliant conductive material can be deposited, such as using an additive manufacturing approach, to provide an HDEA. In an example where the HDEA has multiple mechanical degrees of freedom, at least two compliant conductive regions can be located on a first surface of the first dielectric region and at least one compliant conductive region can be located on an opposite second surface of the first dielectric region. For such an example, …


Project Blipper, Peter Jacobs, Preston Delaware, Ryan Foster Apr 2021

Project Blipper, Peter Jacobs, Preston Delaware, Ryan Foster

Senior Design Project For Engineers

This project was sponsored by Clorox to design and create an automatic bottle-unscrambling system for possible implementation at their bottling plant in Chile. The objective was to use a robotic arm to unscramble bottles from an incoming conveyor belt and place them upright on an outbound conveyor belt. Throughout the research, design, and testing of solutions for this project, several design alternatives were found for each discipline, and will be presented to Clorox so that they can make an informed decision for how and if they want to move forward with implementation of this project.

The project was split into …


Toward Intelligent Welding By Building Its Digital Twin, Qiyue Wang Jan 2021

Toward Intelligent Welding By Building Its Digital Twin, Qiyue Wang

Theses and Dissertations--Electrical and Computer Engineering

To meet the increasing requirements for production on individualization, efficiency and quality, traditional manufacturing processes are evolving to smart manufacturing with the support from the information technology advancements including cyber-physical systems (CPS), Internet of Things (IoT), big industrial data, and artificial intelligence (AI). The pre-requirement for integrating with these advanced information technologies is to digitalize manufacturing processes such that they can be analyzed, controlled, and interacted with other digitalized components. Digital twin is developed as a general framework to do that by building the digital replicas for the physical entities. This work takes welding manufacturing as the case study to …


Hydrogen Fuel Cell Gasket Handling And Sorting With Machine Vision Integrated Dual Arm Robot, Devin C. Fowler Jan 2019

Hydrogen Fuel Cell Gasket Handling And Sorting With Machine Vision Integrated Dual Arm Robot, Devin C. Fowler

Electronic Theses and Dissertations

Recently demonstrated robotic assembling technologies for fuel cell stacks used fuel cell components manually pre-arranged in stacks (presenters), all oriented in the same position. Identifying the original orientation of fuel cell components and loading them in stacks for a subsequent automated assembly process is a difficult, repetitive work cycle which if done manually, deceives the advantages offered by automated fabrication technologies of fuel cell components and by robotic assembly processes. We present an innovative robotic technology which enables the integration of automated fabrication processes of fuel cell components with robotic assembly of fuel cell stacks into a fully automated fuel …


Light Touch Based Virtual Cane For Balance Assistance During Standing, Sindhu Reddy Alluri Jan 2019

Light Touch Based Virtual Cane For Balance Assistance During Standing, Sindhu Reddy Alluri

Masters Theses

"Can additional information about one's body kinematics provided through hands improve human balance? Light-Touch (LT) through hands helps improve balance in a wide range of populations, both healthy and impaired. The force is too small to provide any meaningful mechanical assistance -- rather, it is suggested that the additional sensory information through hands helps the body improve balance.

To investigate the potential for improving human balance through biofeedback through hands, we developed a Virtual Cane (VC) for balance assistance during standing. The VC mimics the physical cane's function of providing information about one's body in space. Balance experiments on 10 …


A Scalable, Chunk-Based Slicer For Cooperative 3d Printing, Jace J. Mcpherson Dec 2018

A Scalable, Chunk-Based Slicer For Cooperative 3d Printing, Jace J. Mcpherson

Computer Science and Computer Engineering Undergraduate Honors Theses

Cooperative 3D printing is an emerging technology that aims to increase the 3D printing speed and to overcome the size limit of the printable object by having multiple mobile 3D printers (printhead-carrying mobile robots) work together on a single print job on a factory floor. It differs from traditional layer-by-layer 3D printing due to requiring multiple mobile printers to work simultaneously without interfering with each other. Therefore, a new approach for slicing a digital model and generating commands for the mobile printers is needed, which has not been discussed in literature before. We propose a chunk-by-chunk based slicer that divides …


Dynamic Model For Simulating Motion Of The Right Ventricle, Brian Michael Larsen, Sam Koopman Porter, John Francis D'Ambrosio Jun 2018

Dynamic Model For Simulating Motion Of The Right Ventricle, Brian Michael Larsen, Sam Koopman Porter, John Francis D'Ambrosio

Mechanical Engineering

This report documents all the research, ideation, and mockups used to determine right ventricle motion and develop a system capable of reproducing that motion on a tissue sample. The model is intended for evaluating anchoring systems being developed by Edwards Lifesciences for use with tricuspid valve therapies. Several design solutions were considered for the primary functions of recreating motion of the right ventricle and attaching tissue to the device. From these ideas a primary means of producing motion and attaching tissue was selected. These ideas were then developed over the course of a school year to become the final system …


Real Time And High Fidelity Quadcopter Tracking System, Tyler Mckay Hall Dec 2017

Real Time And High Fidelity Quadcopter Tracking System, Tyler Mckay Hall

Computer Engineering

This project was conceived as a desired to have an affordable, flexible and physically compact tracking system for high accuracy spatial and orientation tracking. Specifically, this implementation is focused on providing a low cost motion capture system for future research. It is a tool to enable the further creation of systems that would require the use of accurate placement of landing pads, payload acquires and delivery. This system will provide the quadcopter platform a coordinate system that can be used in addition to GPS.

Field research with quadcopter manufacturers, photographers, agriculture and research organizations were contact and interviewed for information …


Mechanical Design And Optimization Of An Interactive Animatronic Bald Eagle, Eric Burns Sep 2016

Mechanical Design And Optimization Of An Interactive Animatronic Bald Eagle, Eric Burns

Phi Kappa Phi Research Symposium (2012-2016)

Animatronics is a specialized sub-category of mechatronics, a fusion of mechanical and electrical engineering. The field has grown from small, individual projects into a major industry. As animatronics progress, mechanical engineers are pushed to design internal structures which occupy ever-decreasing spaces and to ensure designs can undergo maintenance and modifications smoothly. This research investigates methods of reducing space required for mechanisms and several other beneficial methods of development as well as varying satisfactions for audiences when exposed to actor-controlled systems rather than pre-scripted functions. The mechanical systems are designed using CAD software available at Georgia Southern. On-campus, resources are used …


Development Of An Autonomous Robotic Mushroom Harvester, Nikita Alexeevich Kuchinskiy Feb 2016

Development Of An Autonomous Robotic Mushroom Harvester, Nikita Alexeevich Kuchinskiy

Electronic Thesis and Dissertation Repository

The process of development of a new robot is one of the modern technological arts. This process involves multiple complex steps and recursive approach. In this project, a solution for automatic harvesting of mushrooms is developed. In order to design an effective solution, it is necessary to explore and take into consideration the limitations of grasping very soft and fragile objects (particularly mushrooms). We will elaborate several strategies of picking and analyze each strategy to formulate the design requirements, develop a solution, and finally, evaluate the efficiency of the proposed solution in actual farm conditions for real mushrooms. The mushroom …


Innovative Connectivity Ensuring Education (I.-C.E.E.), Luke Cole, Andrew Ma, Nicholas Ross, Daniel Williams Jun 2015

Innovative Connectivity Ensuring Education (I.-C.E.E.), Luke Cole, Andrew Ma, Nicholas Ross, Daniel Williams

Electrical Engineering

This is the critical design review for the Telepresence/Telerobotic Technology for Children with Disabilities Project by team I.- C.E.E. (Innovative Connectivity Ensuring Education). This report details our telepresence system design for our client (Nathan Stilts) including design choices/justification, testing verification and procedures, and chosen components for implementation. There are seven chapters in total starting with introductory/background information followed by hardware and software design, verification, and testing and concludes with the current status of the project and what future work may need to be included.