Open Access. Powered by Scholars. Published by Universities.®

Applied Mechanics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 10 of 10

Full-Text Articles in Applied Mechanics

An Experimental Study Towards Underwater Propulsion System Using Structure Borne Traveling Waves, Shreyas Suhas Gadekar Jan 2022

An Experimental Study Towards Underwater Propulsion System Using Structure Borne Traveling Waves, Shreyas Suhas Gadekar

Dissertations, Master's Theses and Master's Reports

The method of generating steady-state structure-borne traveling waves underwater in an infinite media creates abundant opportunities in the field of propulsive applications, and they are gaining attention from several researchers. This experimental study provides a framework for harnessing traveling waves in a 1D beam immersed under quiescent water using two force input methods and providing a motion to an object floating on the surface of the water.

In this study, underwater traveling waves are tailored using structural vibrations at five different frequencies in the range of 10Hz to 300Hz. The resulting fluid motion provides a propulsive thrust that moves a …


Marangoni Propulsion Of Active Particles, Saeed Jafari Kang Jan 2021

Marangoni Propulsion Of Active Particles, Saeed Jafari Kang

Dissertations, Master's Theses and Master's Reports

We study the surfing motion of active particles located at a flat liquid-gas interface. The particles create and maintain a surface tension gradient by asymmetrically discharging a surface tension-reducing agent. We employ theory and numerical simulation to investigate the Marangoni propulsion of these active surfers. First, we use the reciprocal theorem to establish a relationship between the propulsion speed and the release of the active chemical. This theoretical relation is utilized to examine the effect of wall confinement and geometry on the Marangoni-driven motion of active particle when the inertial effects are negligible and when the transports of the released …


Thermomechanical Mechanisms That Cause Adhesion Of Aluminum High Pressure Die Castings To The Die, Alex Monroe Jan 2021

Thermomechanical Mechanisms That Cause Adhesion Of Aluminum High Pressure Die Castings To The Die, Alex Monroe

Dissertations, Master's Theses and Master's Reports

In high pressure die casting (HPDC) of aluminum, cast material adhering to die is a significant defect. Adhesion occurs in two primary ways. The casting may stick preventing its removal from the die. Aluminum can also adhere to the die and buildup in local areas on the die surface with additional casting cycles. This second form of adhesion is called soldering. Lubricant is the best technology to control all forms of adhesion, but it comes at the cost of casting porosity, blisters, reduced die life, and increased die casting machine wear. New strategies to prevent adhesion are desired to eliminate …


Phase-Field Fracture Modeling For Interlocking Micro-Architectured Materials, Shubham Sinha Jan 2021

Phase-Field Fracture Modeling For Interlocking Micro-Architectured Materials, Shubham Sinha

Dissertations, Master's Theses and Master's Reports

It is fascinating to see how natural materials like teeth enamel, bone and nacre possess a very high stiffness and strength in spite of the fact that they are composed of minerals mostly. Studies have shown the reason for this aberration as the presence of weaker interfaces with intricate interlocking architectures at microscopic levels in these materials. Inspired by the architecture of these materials, micro-architectured sutures with jig-saw like geometry is being studied in this research study. The main focus of this study is to examine the effects of friction co-efficient and interlocking angles of the jig-saw tabs on pullout …


Studying The Effects Of Initial Crack Angle On The Crack Propagation In Graphene Nano-Ribbon Through Molecular Dynamics Simulations, Vijay Kumar Pathak Jan 2021

Studying The Effects Of Initial Crack Angle On The Crack Propagation In Graphene Nano-Ribbon Through Molecular Dynamics Simulations, Vijay Kumar Pathak

Dissertations, Master's Theses and Master's Reports

In this research, we have worked on the brittle fracture of graphene nano-ribbon to explore the behavior of crack propagation at different crack angles. We have performed classical Molecular Dynamics simulations using LAMMPS at ten different crack angles between 0 degrees and 45 degrees, in an increment of 5 degrees to observe the parameters that dominate the crack path. The graphene nanoribbon is loaded in the zigzag direction by pulling it in the armchair direction with a pre-existing crack in the center. We have used OVITO for the visualization of the simulation. AIREBO potential is employed in this work because …


Modeling And Analysis For Driveline Jerk Control, Prince Lakhani Jan 2018

Modeling And Analysis For Driveline Jerk Control, Prince Lakhani

Dissertations, Master's Theses and Master's Reports

In modern-day automotive industry, automotive manufacturers pay keen attention to driver’s safety and comfort by ensuring good vehicle drivability, feel of acceleration, limiting jerk and noise. The vehicle driveline plays a critical role to meet these criteria. By using high-fidelity simulation tool such as AMESim®, it is now possible to accurately model the vehicle driveline to be tested for different scenarios. With Simulink®, one can develop an efficient torque-based control system to limit the driveline oscillations and the generated noise. So, a joint simulation is used which provides a platform to evaluate the estimators and control system while considering the …


Turbulent Transition Simulation And Particulate Capture Modeling With An Incompressible Lattice Boltzmann Method, John R. Murdock Jan 2017

Turbulent Transition Simulation And Particulate Capture Modeling With An Incompressible Lattice Boltzmann Method, John R. Murdock

Dissertations, Master's Theses and Master's Reports

Derivation of an unambiguous incompressible form of the lattice Boltzmann equation is pursued in this dissertation. Further, parallelized implementation in developing application areas is researched. In order to achieve a unique incompressible form which clarifies the algorithm implementation, appropriate ansatzes are utilized. Through the Chapman-Enskog expansion, the exact incompressible Navier-Stokes equations are recovered. In initial studies, fundamental 2D and 3D canonical simulations are used to evaluate the validity and application, and test the required boundary condition modifications. Several unique advantages over the standard equation and alternative forms found in literature are found, including faster convergence, greater stability, and higher fidelity …


Fea Analysis And Optimization Of Differential Housing For Fatigue Stresses And Fatigue Test Design To Study Skin Effect In Ductile Iron, Swapnil A. Pandey Jan 2017

Fea Analysis And Optimization Of Differential Housing For Fatigue Stresses And Fatigue Test Design To Study Skin Effect In Ductile Iron, Swapnil A. Pandey

Dissertations, Master's Theses and Master's Reports

Automotive emission standards are getting more stringent day by day and governments worldwide are moving to reduce emissions from automobiles. In this scenario reducing the weight of automobile components becomes an important design objective to reduce emissions. A 10% reduction of weight in the complete automobile leads to 6-8 percent improvement in mileage (Mhapankar 2015). Also, powertrain components make up for approximately 27% of the total automobile weight and thus optimizing the design of components in the powertrain is an important task (Mhapankar 2015). Statistics show that 26% of component failures in automobiles are part of powertrain and 21% of …


Frontal Crash Analysis Of A Conformable Cng Tank Using Finite Element Analysis, Datta Sandesh Manjunath Jan 2017

Frontal Crash Analysis Of A Conformable Cng Tank Using Finite Element Analysis, Datta Sandesh Manjunath

Dissertations, Master's Theses and Master's Reports

The purpose of this study is to computationally model and analyze a Conformable Compressed Natural Gas (CNG) fuel tank for frontal crashes using Finite Element Analysis. Researchers have developed a CNG fuel tank, which is conformable, non-conventional and non-cylindrical. This tank increases cost efficiency, volumetric efficiency and cargo efficiency in CNG vehicle applications. A lightweight pickup truck (2015 Chevrolet Silverado) has been used to integrate the CNG tanks and field-testing has been conducted to demonstrate the application.

The report mainly focuses on the effective finite element modeling of the chassis, brackets and tanks using HYPERMESH and RADIOSS. The frontal crash …


Design And Fabrication Of A Suspension Rig, Abhijith Geo Philip Jan 2016

Design And Fabrication Of A Suspension Rig, Abhijith Geo Philip

Dissertations, Master's Theses and Master's Reports

Owing to its placement under the vehicle body, the suspension system is one of the parts of the vehicle which are difficult to comprehend completely, albeit being a vital component. For demonstrating the working of a suspension system, a physical model in which one can actually see the movement of all the components would be a great tool. A Mustang II independent front suspension system was purchased from Heidts Engineering Performance and a rig that can emulate some of the real world situations of vehicle suspension action was designed and fabricated. All the components are accessible and conditions like bounce, …