Open Access. Powered by Scholars. Published by Universities.®

Applied Mechanics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Applied Mechanics

Modeling And Analysis For Driveline Jerk Control, Prince Lakhani Jan 2018

Modeling And Analysis For Driveline Jerk Control, Prince Lakhani

Dissertations, Master's Theses and Master's Reports

In modern-day automotive industry, automotive manufacturers pay keen attention to driver’s safety and comfort by ensuring good vehicle drivability, feel of acceleration, limiting jerk and noise. The vehicle driveline plays a critical role to meet these criteria. By using high-fidelity simulation tool such as AMESim®, it is now possible to accurately model the vehicle driveline to be tested for different scenarios. With Simulink®, one can develop an efficient torque-based control system to limit the driveline oscillations and the generated noise. So, a joint simulation is used which provides a platform to evaluate the estimators and control system while considering ...


Computational Studies On Biomechanics Of Concussion And On Efficacy Of Football Helmets, David Labyak Jan 2017

Computational Studies On Biomechanics Of Concussion And On Efficacy Of Football Helmets, David Labyak

Dissertations, Master's Theses and Master's Reports

Football helmets have been used for many years to prevent head injuries to players. Over the years, the helmet design has evolved from a crude leather head covering to the more recent form fitting helmets that are seen today. The one design feature that has been common in the majority of all helmets is a hard polycarbonate shell with a foam cushion padding. The main goal of the padding layer was to reduce the amount of linear acceleration during an impact event. The one feature that has been overlooked is how stiff the padding is in rotation.

The purpose of ...


Fea Analysis And Optimization Of Differential Housing For Fatigue Stresses And Fatigue Test Design To Study Skin Effect In Ductile Iron, Swapnil A. Pandey Jan 2017

Fea Analysis And Optimization Of Differential Housing For Fatigue Stresses And Fatigue Test Design To Study Skin Effect In Ductile Iron, Swapnil A. Pandey

Dissertations, Master's Theses and Master's Reports

Automotive emission standards are getting more stringent day by day and governments worldwide are moving to reduce emissions from automobiles. In this scenario reducing the weight of automobile components becomes an important design objective to reduce emissions. A 10% reduction of weight in the complete automobile leads to 6-8 percent improvement in mileage (Mhapankar 2015). Also, powertrain components make up for approximately 27% of the total automobile weight and thus optimizing the design of components in the powertrain is an important task (Mhapankar 2015). Statistics show that 26% of component failures in automobiles are part of powertrain and 21% of ...


Frontal Crash Analysis Of A Conformable Cng Tank Using Finite Element Analysis, Datta Sandesh Manjunath Jan 2017

Frontal Crash Analysis Of A Conformable Cng Tank Using Finite Element Analysis, Datta Sandesh Manjunath

Dissertations, Master's Theses and Master's Reports

The purpose of this study is to computationally model and analyze a Conformable Compressed Natural Gas (CNG) fuel tank for frontal crashes using Finite Element Analysis. Researchers have developed a CNG fuel tank, which is conformable, non-conventional and non-cylindrical. This tank increases cost efficiency, volumetric efficiency and cargo efficiency in CNG vehicle applications. A lightweight pickup truck (2015 Chevrolet Silverado) has been used to integrate the CNG tanks and field-testing has been conducted to demonstrate the application.

The report mainly focuses on the effective finite element modeling of the chassis, brackets and tanks using HYPERMESH and RADIOSS. The frontal crash ...


Turbulent Transition Simulation And Particulate Capture Modeling With An Incompressible Lattice Boltzmann Method, John R. Murdock Jan 2017

Turbulent Transition Simulation And Particulate Capture Modeling With An Incompressible Lattice Boltzmann Method, John R. Murdock

Dissertations, Master's Theses and Master's Reports

Derivation of an unambiguous incompressible form of the lattice Boltzmann equation is pursued in this dissertation. Further, parallelized implementation in developing application areas is researched. In order to achieve a unique incompressible form which clarifies the algorithm implementation, appropriate ansatzes are utilized. Through the Chapman-Enskog expansion, the exact incompressible Navier-Stokes equations are recovered. In initial studies, fundamental 2D and 3D canonical simulations are used to evaluate the validity and application, and test the required boundary condition modifications. Several unique advantages over the standard equation and alternative forms found in literature are found, including faster convergence, greater stability, and higher fidelity ...


Restraint System Design And Evaluation For Military Specific Applications, Sebastian Karwaczynski Jan 2016

Restraint System Design And Evaluation For Military Specific Applications, Sebastian Karwaczynski

Dissertations, Master's Theses and Master's Reports

This research focuses on designing an optimal restraint system for usage in a military vehicle applications. The designed restraint system must accommodate a wide range of DHM’s and ATD’s with and without PPE such as: helmet, boots, and body armor. The evaluation of the restraint systems were conducted in a simulated vehicle environment, which was utilized to downselect the ideal restraint system for this program.

In December of 2011 the OCP TECD program was formulated to increase occupant protection. To do this, 3D computer models were created to accommodate the entire Soldier population in the Army. These models ...


Design And Fabrication Of A Suspension Rig, Abhijith Geo Philip Jan 2016

Design And Fabrication Of A Suspension Rig, Abhijith Geo Philip

Dissertations, Master's Theses and Master's Reports

Owing to its placement under the vehicle body, the suspension system is one of the parts of the vehicle which are difficult to comprehend completely, albeit being a vital component. For demonstrating the working of a suspension system, a physical model in which one can actually see the movement of all the components would be a great tool. A Mustang II independent front suspension system was purchased from Heidts Engineering Performance and a rig that can emulate some of the real world situations of vehicle suspension action was designed and fabricated. All the components are accessible and conditions like bounce ...