Open Access. Powered by Scholars. Published by Universities.®

Applied Mechanics Commons

Open Access. Powered by Scholars. Published by Universities.®

University of New Orleans

Discipline
Keyword
Publication Year

Articles 1 - 10 of 10

Full-Text Articles in Applied Mechanics

General Nonlinear-Material Elasticity In Classical One-Dimensional Solid Mechanics, Ronald Joseph Giardina Jr Aug 2019

General Nonlinear-Material Elasticity In Classical One-Dimensional Solid Mechanics, Ronald Joseph Giardina Jr

University of New Orleans Theses and Dissertations

We will create a class of generalized ellipses and explore their ability to define a distance on a space and generate continuous, periodic functions. Connections between these continuous, periodic functions and the generalizations of trigonometric functions known in the literature shall be established along with connections between these generalized ellipses and some spectrahedral projections onto the plane, more specifically the well-known multifocal ellipses. The superellipse, or Lam\'{e} curve, will be a special case of the generalized ellipse. Applications of these generalized ellipses shall be explored with regards to some one-dimensional systems of classical mechanics. We will adopt the Ramberg-Osgood relation …


Dynamic Response Of A Hingeless Helicopter Rotor Blade At Hovering And Forward Flights, Pratik Sarker Dec 2018

Dynamic Response Of A Hingeless Helicopter Rotor Blade At Hovering And Forward Flights, Pratik Sarker

University of New Orleans Theses and Dissertations

The helicopter possesses the unrivaled capacity for vertical takeoff and landing which has made the helicopter suitable for numerous tasks such as carrying passengers and equipment, providing air medical services, firefighting, and other military and civil tasks. The nature of the aerodynamic environment surrounding the helicopter gives rise to a significant amount of vibration to its whole body. Among different sources of vibrations, the main rotor blade is the major contributor. The dynamic characteristics of the hingeless rotor consisting of elastic blades are of particular interest because of the strongly coupled equations of motion. The elastic rotor blades are subjected …


Design, Manufacture, And Structural Dynamic Analysis Of A Biomimetic Insect-Sized Wing For Micro Air Vehicles, Jose Enrique Rubio Dec 2017

Design, Manufacture, And Structural Dynamic Analysis Of A Biomimetic Insect-Sized Wing For Micro Air Vehicles, Jose Enrique Rubio

University of New Orleans Theses and Dissertations

The exceptional flying characteristics of airborne insects motivates the design of biomimetic wing structures that can exhibit a similar structural dynamic behavior. For this purpose, this investigation describes a method for both manufacturing a biomimetic insect-sized wing using the photolithography technique and analyzing its structural dynamic response. The geometry of a crane fly forewing (family Tipulidae) is acquired using a micro-computed tomography scanner. A computer-aided design model is generated from the measurements of the reconstructed scanned model of the insect wing to design the photomasks of the membrane and the venation network required for the photolithography procedure. A composite …


On The Ramberg-Osgood Stress-Strain Model And Large Deformations Of Cantilever Beams, Ronald J. Giardina Jr Aug 2017

On The Ramberg-Osgood Stress-Strain Model And Large Deformations Of Cantilever Beams, Ronald J. Giardina Jr

University of New Orleans Theses and Dissertations

In this thesis the Ramberg-Osgood nonlinear model for describing the behavior of many different materials is investigated. A brief overview of the model as it is currently used in the literature is undertaken and several misunderstandings and possible pitfalls in its application is pointed out, especially as it pertains to more recent approaches to finding solutions involving the model. There is an investigation of the displacement of a cantilever beam under a combined loading consisting of a distributed load across the entire length of the beam and a point load at its end and new solutions to this problem are …


Numerical Computation Of Transient Response Of 2d Wedge Impact, Naresh Kumar Koyyapu Dec 2016

Numerical Computation Of Transient Response Of 2d Wedge Impact, Naresh Kumar Koyyapu

University of New Orleans Theses and Dissertations

The diverse applications of advanced marine craft ascribed to their high speed and technological advancements has led to the use of stronger and lighter metals in such crafts. High speed, in effect also increases slamming loads as higher speed increases frequency of wave encounter while operating in waves. The present study is limited to wedge impact models. Fundamentally, the study is thus about two-dimensional (2D) wedge impact in water. In an attempt to predict the structural response to impact hydrodynamic force, a beam element based finite element (FE) computer program is written and the results of the code are presented …


A Hybrid Technique Of Energy Harvesting From Mechanical Vibration And Ambient Illumination, M Shafiqur Rahman Aug 2016

A Hybrid Technique Of Energy Harvesting From Mechanical Vibration And Ambient Illumination, M Shafiqur Rahman

University of New Orleans Theses and Dissertations

Hybrid energy harvesting is a concept applied for improving the performance of the conventional stand-alone energy harvesters. The thesis presents the analytical formulations and characterization of a hybrid energy harvester that incorporates photovoltaic, piezoelectric, electromagnetic, and electrostatic mechanisms. The initial voltage required for electrostatic mechanism is obtained by the photovoltaic technique. Other mechanisms are embedded into a bimorph piezoelectric cantilever beam having a tip magnet and two sets of comb electrodes on two sides of its substructure. All the segments are interconnected by an electric circuit to generate combined output when subjected to vibration and solar illumination. Results for power …


Numerical Solutions Of Generalized Burgers' Equations For Some Incompressible Non-Newtonian Fluids, Yupeng Shu Aug 2015

Numerical Solutions Of Generalized Burgers' Equations For Some Incompressible Non-Newtonian Fluids, Yupeng Shu

University of New Orleans Theses and Dissertations

The author presents some generalized Burgers' equations for incompressible and isothermal flow of viscous non-Newtonian fluids based on the Cross model, the Carreau model, and the Power-Law model and some simple assumptions on the flows. The author numerically solves the traveling wave equations for the Cross model, the Carreau model, the Power-Law model by using industrial data. The author proves existence and uniqueness of solutions to the traveling wave equations of each of the three models. The author also provides numerical estimates of the shock thickness as well as maximum strain $\varepsilon_{11}$ for each of the fluids.


Investigation Of The Quenching Characteristics Of Steel Components By Static And Dynamic Analyses, Pratik Sarker Dec 2014

Investigation Of The Quenching Characteristics Of Steel Components By Static And Dynamic Analyses, Pratik Sarker

University of New Orleans Theses and Dissertations

Machine components made of steel are subjected to heat treatment processes for improving mechanical properties in order to enhance product life and is usually done by quenching. During quenching, heat is transferred rapidly from the hot metal component to the quenchant and that rapid temperature drop induces phase transformation in the metal component. As a result, quenching generates some residual stresses and deformations in the material. Therefore, to estimate the temperature distribution, residual stress, and deformation computationally; three-dimensional finite element models are developed for two different steel components – a spur gear and a circular tube by a static and …


Modal Characterization And Structural Dynamic Response Of A Crane Fly Forewing, Jose E. Rubio Dec 2014

Modal Characterization And Structural Dynamic Response Of A Crane Fly Forewing, Jose E. Rubio

University of New Orleans Theses and Dissertations

This study describes a method for conducting the structural dynamic analysis of a crane fly (family Tipulidae) forewing under different airflow conditions. Wing geometry is captured via micro-computed tomography scanning. A finite element model of the forewing is developed from the reconstructed model of the scan. The finite element model is validated by comparing the natural frequencies of an elliptical membrane with similar dimensions of the crane fly forewing to its analytical solution. Furthermore, a simulation of the fluid-structure interaction of the forewing under different airflows is performed by coupling the finite element model of the wing with a …


An Applied Numerical Simulation Of Entrained-Flow Coal Gasification With Improved Sub-Models, Xijia Lu Aug 2013

An Applied Numerical Simulation Of Entrained-Flow Coal Gasification With Improved Sub-Models, Xijia Lu

University of New Orleans Theses and Dissertations

The United States holds the world's largest estimated reserves of coal and is also a net exporter of it. Coal gasification provides a cleaner way to utilize coal than directly burning it. Gasification is an incomplete oxidation process that converts various carbon-based feedstocks into clean synthetic gas (syngas), which can be used to produce electricity and mechanical power with significantly reduced emissions. Syngas can also be used as feedstock for making chemicals and various materials.

A Computational Fluid Dynamics (CFD) scheme has been used to simulate the gasification process for many years. However, many sub-models still need to be developed …