Open Access. Powered by Scholars. Published by Universities.®

Applied Mechanics Commons

Open Access. Powered by Scholars. Published by Universities.®

University of Kentucky

Discipline
Keyword
Publication Year
Publication

Articles 1 - 16 of 16

Full-Text Articles in Applied Mechanics

Quantification Of Myocardial Mechanics In Left Ventricles Under Inotropic Stimulation And In Healthy Right Ventricles Using 3d Dense Cmr, Zhan-Qiu Liu Jan 2019

Quantification Of Myocardial Mechanics In Left Ventricles Under Inotropic Stimulation And In Healthy Right Ventricles Using 3d Dense Cmr, Zhan-Qiu Liu

Theses and Dissertations--Mechanical Engineering

Statistical data from clinical studies indicate that the death rate caused by heart disease has decreased due to an increased use of evidence-based medical therapies. This includes the use of magnetic resonance imaging (MRI), which is one of the most common non-invasive approaches in evidence-based health care research. In the current work, I present 3D Lagrangian strains and torsion in the left ventricle of healthy and isoproterenol-stimulated rats, which were investigated using Displacement ENcoding with Stimulated Echoes (DENSE) cardiac magnetic resonance (CMR) imaging. With the implementation of the 12-segment model, a detailed profile of regional cardiac mechanics was reconstructed for ...


Design And Analysis Of A 3d-Printed, Thermoplastic Elastomer (Tpe) Spring Element For Use In Corrective Hand Orthotics, Kevin Thomas Richardson Jan 2018

Design And Analysis Of A 3d-Printed, Thermoplastic Elastomer (Tpe) Spring Element For Use In Corrective Hand Orthotics, Kevin Thomas Richardson

Theses and Dissertations--Mechanical Engineering

This thesis proposes an algorithm that determine the geometry of 3D-printed, custom-designed spring element bands made of thermoplastic elastomer (TPE) for use in a wearable orthotic device to aid in the physical therapy of a human hand exhibiting spasticity after stroke. Each finger of the hand is modeled as a mechanical system consisting of a triple-rod pendulum with nonlinear stiffness at each joint and forces applied at the attachment point of each flexor muscle. The system is assumed quasi-static, which leads to a torque balance between the flexor tendons in the hand, joint stiffness and the design force applied to ...


Simulation Of Horse-Fence Contact And Interaction Affecting Rotational Falls In The Sport Of Eventing, Gregorio Robles Vega Jan 2017

Simulation Of Horse-Fence Contact And Interaction Affecting Rotational Falls In The Sport Of Eventing, Gregorio Robles Vega

Theses and Dissertations--Mechanical Engineering

Rotational falls, or somersault falls, have led to serious and fatal injuries during the cross-country phase of Eventing competitions. Research to improve the safety of the sport began in 2000 after five fatal injuries occurred in the 1999 Eventing season. These efforts led to safety devices such as air jackets, improved helmets, and frangible/deformable fences. The focus of this thesis is to develop a more complete understanding of the horse-fence interaction as the approach motion transitions to a rotational fall. To achieve this, a large distribution of inertial properties was compiled through the development of a cylinder-based inertia approximation ...


The Limits & Effects Of Draw On Properties And Morphology Of Pan-Based Precursor And The Resultant Carbon Fibers, Sarah Edrington Jan 2017

The Limits & Effects Of Draw On Properties And Morphology Of Pan-Based Precursor And The Resultant Carbon Fibers, Sarah Edrington

Theses and Dissertations--Mechanical Engineering

The process, structure, and property relationship of PAN fiber as a precursor to carbon fiber was studied. The limitations of stable spinning and property improvement associated with hot draw in solution spinning were found and quantified. Conditions were varied to generated precursor fiber up to the limit of draw, from which actual samples were collected for thermal conversion to carbon fiber. Samples of PAN and subsequent carbon fiber were characterized using tensile testing and x-ray analysis. The effects of draw on modulus and break stress, as well as the orientation of the crystalline structure of both parent precursor and resultant ...


Shape Memory Behavior Of Dense And Porous Niti Alloys Fabricated By Selective Laser Melting, Soheil Saedi Jan 2017

Shape Memory Behavior Of Dense And Porous Niti Alloys Fabricated By Selective Laser Melting, Soheil Saedi

Theses and Dissertations--Mechanical Engineering

Selective Laser Melting (SLM) of Additive Manufacturing is an attractive fabrication method that employs CAD data to selectively melt the metal powder layer by layer via a laser beam and produce a 3D part. This method not only opens a new window in overcoming traditional NiTi fabrication problems but also for producing porous or complex shaped structures. The combination of SLM fabrication advantages with the unique properties of NiTi alloys, such as shape memory effect, superelasticity, high ductility, work output, corrosion, biocompatibility, etc. makes SLM NiTi alloys extremely promising for numerous applications.

The SLM process parameters such as laser power ...


Analytical And Boundary Element Solutions Of Bulk Reacting Lined Ducts And Parallel-Baffle Silencers, Jundong Li Jan 2017

Analytical And Boundary Element Solutions Of Bulk Reacting Lined Ducts And Parallel-Baffle Silencers, Jundong Li

Theses and Dissertations--Mechanical Engineering

Lined silencers of various configurations are used to attenuate the noise from building HVAC equipment, gas turbines, and other machinery. First-mode analytical solutions are presented for sound attenuation along rectangular lined ducts, parallel-baffle silencers, and circular lined ducts. The sound absorptive lining is treated using a bulk property model. The analytical solutions entail solving a nonlinear characteristic equation in the transverse direction after the rigid-wall boundary condition is applied. The solution is compared to the boundary element solution and a local impedance analytical solution for several test cases.


Analytical Strip Method For Thin Cylindrical Shells, John T. Perkins Jan 2017

Analytical Strip Method For Thin Cylindrical Shells, John T. Perkins

Theses and Dissertations--Civil Engineering

The Analytical Strip Method (ASM) for the analysis of thin cylindrical shells is presented in this dissertation. The system of three governing differential equations for the cylindrical shell are reduced to a single eighth order partial differential equation (PDE) in terms of a potential function. The PDE is solved as a single series form of the potential function, from which the displacement and force quantities are determined. The solution is applicable to isotropic, generally orthotropic, and laminated shells. Cylinders may have simply supported edges, clamped edges, free edges, or edges supported by isotropic beams. The cylindrical shell can be stiffened ...


Three-Dimensional Microstructural Effects On Multi-Site Fatigue Crack Nucleation Behaviors Of High Strength Aluminum Alloys, Yan Jin Jan 2016

Three-Dimensional Microstructural Effects On Multi-Site Fatigue Crack Nucleation Behaviors Of High Strength Aluminum Alloys, Yan Jin

Theses and Dissertations--Chemical and Materials Engineering

An experimental method was further developed to quantify the anisotropy of multi-site fatigue crack initiation behaviors in high strength Al alloys by four-point bend fatigue testing under stress control. In this method, fatigue crack initiation sites (fatigue weak-links, FWLs) were measured on the sample surface at different cyclic stress levels. The FWL density in an alloy could be best described using a three-parameter Weibull function of stress, though other types of sigmoidal functions might also be used to quantify the relationship between FWL density and stress. The strength distribution of the FWLs was derived from the Weibull function determined by ...


Biventricular Finite Element Modeling And Quantification Of 3d Langragian Strains And Torsion Using Dense Mri, Zhanqiu Liu Jan 2016

Biventricular Finite Element Modeling And Quantification Of 3d Langragian Strains And Torsion Using Dense Mri, Zhanqiu Liu

Theses and Dissertations--Mechanical Engineering

Statistical data suggests that increased use of evidence-based medical therapies has largely contributed to the decrease in American death rate caused by heart disease. And my studies are about two applications of magnetic resonance imaging (MRI) as a non-invasive approach in evidence-based health care research. In my first study, the achievement of a pulmonary valve replacement surgery was assessed on a patient with tetralogy of Fallot (TOF). In order to evaluate the remodeling of right ventricle, two biventricular finite element models were built up for pre-surgical images and post-surgical images. In my second study, 3D Lagrangian strains and torsion in ...


Effects Of Magnetic Field On The Shape Memory Behavior Of Single And Polycrystalline Magnetic Shape Memory Alloys, Ali S. Turabi Jan 2015

Effects Of Magnetic Field On The Shape Memory Behavior Of Single And Polycrystalline Magnetic Shape Memory Alloys, Ali S. Turabi

Theses and Dissertations--Mechanical Engineering

Magnetic Shape Memory Alloys (MSMAs) have the unique ability to change their shape within a magnetic field, or in the presence of stress and a change in temperature. MSMAs have been widely investigated in the past decade due to their ability to demonstrate large magnetic field induced strain and higher frequency response than conventional shape memory alloys (SMAs). NiMn-based alloys are the workhorse of metamagnetic shape memory alloys since they are able to exhibit magnetic field induced phase transformation. In these alloys, martensite and austenite phases have different magnetization behavior, such as the parent phase can be ferromagnetic and martensite ...


High Temperature Flow Solver For Aerothermodynamics Problems, Huaibao Zhang Jan 2015

High Temperature Flow Solver For Aerothermodynamics Problems, Huaibao Zhang

Theses and Dissertations--Mechanical Engineering

A weakly ionized hypersonic flow solver for the simulation of reentry flow is firstly developed at the University of Kentucky. This code is the fluid dynamics module of known as Kentucky Aerothermodynamics and Thermal Response System (KATS). The solver uses a second-order finite volume approach to solve the laminar Navier– Stokes equations, species mass conservation and energy balance equations for flow in chemical and thermal non-equilibrium state, and a fully implicit first-order backward Euler method for the time integration. The hypersonic flow solver is then extended to account for very low Mach number flow using the preconditioning and switch of ...


Shape Memory Behavior Of Single Crystal And Polycrystalline Ni-Rich Nitihf High Temperature Shape Memory Alloys, Sayed M. Saghaian Jan 2015

Shape Memory Behavior Of Single Crystal And Polycrystalline Ni-Rich Nitihf High Temperature Shape Memory Alloys, Sayed M. Saghaian

Theses and Dissertations--Mechanical Engineering

NiTiHf shape memory alloys have been receiving considerable attention for high temperature and high strength applications since they could have transformation temperatures above 100 °C, shape memory effect under high stress (above 500 MPa) and superelasticity at high temperatures. Moreover, their shape memory properties can be tailored by microstructural engineering. However, NiTiHf alloys have some drawbacks such as low ductility and high work hardening in stress induced martensite transformation region. In order to overcome these limitations, studies have been focused on microstructural engineering by aging, alloying and processing.

Shape memory properties and microstructure of four Ni-rich NiTiHf alloys (Ni50.3Ti29 ...


Vibration Of Steel-Framed Floors Supporting Sensitive Equipment In Hospitals, Research Facilities, And Manufacturing Facilities, Di Liu Jan 2015

Vibration Of Steel-Framed Floors Supporting Sensitive Equipment In Hospitals, Research Facilities, And Manufacturing Facilities, Di Liu

Theses and Dissertations--Civil Engineering

Floors have traditionally been designed only for strength and deflection serviceability. As technological advances have been made in medical, scientific and micro-electronics manufacturing, many types of equipment have become sensitive to vibration of the supporting floor. Thus, vibration serviceability has become a routinely evaluated limit state for floors supporting sensitive equipment. Equipment vibration tolerance limits are sometimes expressed as waveform peak acceleration, and are more often expressed as narrowband spectral acceleration, or one-third octave spectral velocity.

Current floor vibration prediction methods, such as those found in the American Institute of Steel Construction Design Guide 11, Floor Vibrations Due to Human ...


Virtualized Welding Based Learning Of Human Welder Behaviors For Intelligent Robotic Welding, Yukang Liu Jan 2014

Virtualized Welding Based Learning Of Human Welder Behaviors For Intelligent Robotic Welding, Yukang Liu

Theses and Dissertations--Electrical and Computer Engineering

Combining human welder (with intelligence and sensing versatility) and automated welding robots (with precision and consistency) can lead to next generation intelligent welding systems. In this dissertation intelligent welding robots are developed by process modeling / control method and learning the human welder behavior.

Weld penetration and 3D weld pool surface are first accurately controlled for an automated Gas Tungsten Arc Welding (GTAW) machine. Closed-form model predictive control (MPC) algorithm is derived for real-time welding applications. Skilled welder response to 3D weld pool surface by adjusting the welding current is then modeled using Adaptive Neuro-Fuzzy Inference System (ANFIS), and compared to ...


Numerical Modeling And Characterization Of Vertically Aligned Carbon Nanotube Arrays, Johnson Joseph Jan 2013

Numerical Modeling And Characterization Of Vertically Aligned Carbon Nanotube Arrays, Johnson Joseph

Theses and Dissertations--Mechanical Engineering

Since their discoveries, carbon nanotubes have been widely studied, but mostly in the forms of 1D individual carbon nanotube (CNT). From practical application point of view, it is highly desirable to produce carbon nanotubes in large scales. This has resulted in a new class of carbon nanotube material, called the vertically aligned carbon nanotube arrays (VA-CNTs). To date, our ability to design and model this complex material is still limited. The classical molecular mechanics methods used to model individual CNTs are not applicable to the modeling of VA-CNT structures due to the significant computational efforts required. This research is to ...


Finite Element Analysis Of The Contact Deformation Of Piezoelectric Materials, Ming Liu Jan 2012

Finite Element Analysis Of The Contact Deformation Of Piezoelectric Materials, Ming Liu

Theses and Dissertations--Chemical and Materials Engineering

Piezoelectric materials in the forms of both bulk and thin-film have been widely used as actuators and sensors due to their electromechanical coupling. The characterization of piezoelectric materials plays an important role in determining device performance and reliability. Instrumented indentation is a promising method for probing mechanical as well as electrical properties of piezoelectric materials.

The use of instrumented indentation to characterize the properties of piezoelectric materials requires analytical relations. Finite element methods are used to analyze the indentation of piezoelectric materials under different mechanical and electrical boundary conditions.

For indentation of a piezoelectric half space, a three-dimensional finite element ...