Open Access. Powered by Scholars. Published by Universities.®

Applied Mechanics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Applied Mechanics

Modeling And Computation Of The Maximum Braking Energy Speed For Transport Category Airplanes, Nihad E. Daidzic May 2019

Modeling And Computation Of The Maximum Braking Energy Speed For Transport Category Airplanes, Nihad E. Daidzic

Nihad E. Daidzic, Dr.-Ing., D.Sc., ATP, CFII, MEI

Transport-category or FAR/CS 25 certified airplanes may occasionally become braking energy capacity limited. Such limitation may exist when heavy airplanes are departing airports at high-density altitudes, on relatively long runways, and/or possibly with some tailwind component. A maximum braking energy VMBE speed exists which may limit the maximum allowable takeoff decision/action speed V1. The ever-existing possibility of high-speed rejected takeoff in such conditions may also limit the airplane gross weight for declared available distances. To gain deeper insights and acquire better understanding of the topic, a theoretical model of the maximum braking energy and the related VMBE ...


Determination Of Rejected Landing Roll Runway Point-Of-No-Return And Go-Around In Transport Category Airplanes, Nihad E. Daidzic, Ph.D., Sc.D. May 2019

Determination Of Rejected Landing Roll Runway Point-Of-No-Return And Go-Around In Transport Category Airplanes, Nihad E. Daidzic, Ph.D., Sc.D.

Nihad E. Daidzic, Dr.-Ing., D.Sc., ATP, CFII, MEI

The decelerate-accelerate-takeoff maneuver in transport category airplanes has been discussed. Mathematical model based on total energy conservation has been used to calculate the rejected landing point-of-no-return on a runway which will still enable the airplane to safely execute go-around and achieve regulatory screen heights and takeoff safety speeds. After this point has been exceeded or below the point-of-no-return speed no go-around should ever be considered. Landing long and fast and/or decelerating on slippery runways may very well result in an overrun which could be prevented if the go-around is attempted before reaching this critical runway point. The point-of-no-return on ...


A Contribution Toward Better Understanding Of Overbanking Tendency In Fixed-Wing Aircraft, Nihad E. Daidzic May 2019

A Contribution Toward Better Understanding Of Overbanking Tendency In Fixed-Wing Aircraft, Nihad E. Daidzic

Nihad E. Daidzic, Dr.-Ing., D.Sc., ATP, CFII, MEI

The phenomenon of overbanking tendency for a rigid-body, fixed-wing aircraft is investigated. Overbanking tendency is defined as a spontaneous, unbalanced rolling moment that keeps increasing an airplaneā€™s bank angle in steep turns and must be arrested by opposite aileron action. As stated by the Federal Aviation Administration, the overbanking tendency may lead to a loss of control, especially in instrument meteorological conditions. It was found in this study that the speed differential over wing halves in horizontal turns indeed creates a rolling moment that achieves maximum values for bank angles between 45 and 55 degrees. However, this induced rolling ...