# Applied Mechanics Commons™

Articles 1 - 3 of 3

## Full-Text Articles in Applied Mechanics

May 2019

#### Modeling And Computation Of The Maximum Braking Energy Speed For Transport Category Airplanes, Nihad E. Daidzic

##### Nihad E. Daidzic, Dr.-Ing., D.Sc., ATP, CFII, MEI

Transport-category or FAR/CS 25 certified airplanes may occasionally become braking energy capacity limited. Such limitation may exist when heavy airplanes are departing airports at high-density altitudes, on relatively long runways, and/or possibly with some tailwind component. A maximum braking energy VMBE speed exists which may limit the maximum allowable takeoff decision/action speed V1. The ever-existing possibility of high-speed rejected takeoff in such conditions may also limit the airplane gross weight for declared available distances. To gain deeper insights and acquire better understanding of the topic, a theoretical model of the maximum braking energy and the related VMBE ...

Determination Of Rejected Landing Roll Runway Point-Of-No-Return And Go-Around In Transport Category Airplanes, Nihad E. Daidzic, Ph.D., Sc.D. May 2019

#### Determination Of Rejected Landing Roll Runway Point-Of-No-Return And Go-Around In Transport Category Airplanes, Nihad E. Daidzic, Ph.D., Sc.D.

##### Nihad E. Daidzic, Dr.-Ing., D.Sc., ATP, CFII, MEI

The decelerate-accelerate-takeoff maneuver in transport category airplanes has been discussed. Mathematical model based on total energy conservation has been used to calculate the rejected landing point-of-no-return on a runway which will still enable the airplane to safely execute go-around and achieve regulatory screen heights and takeoff safety speeds. After this point has been exceeded or below the point-of-no-return speed no go-around should ever be considered. Landing long and fast and/or decelerating on slippery runways may very well result in an overrun which could be prevented if the go-around is attempted before reaching this critical runway point. The point-of-no-return on ...

May 2019

#### A Contribution Toward Better Understanding Of Overbanking Tendency In Fixed-Wing Aircraft, Nihad E. Daidzic

##### Nihad E. Daidzic, Dr.-Ing., D.Sc., ATP, CFII, MEI

The phenomenon of overbanking tendency for a rigid-body, fixed-wing aircraft is investigated. Overbanking tendency is defined as a spontaneous, unbalanced rolling moment that keeps increasing an airplaneās bank angle in steep turns and must be arrested by opposite aileron action. As stated by the Federal Aviation Administration, the overbanking tendency may lead to a loss of control, especially in instrument meteorological conditions. It was found in this study that the speed differential over wing halves in horizontal turns indeed creates a rolling moment that achieves maximum values for bank angles between 45 and 55 degrees. However, this induced rolling ...