# Applied Mechanics Commons™

Articles 1 - 18 of 18

## Full-Text Articles in Applied Mechanics

Determination Of Rejected Landing Roll Runway Point-Of-No-Return And Go-Around In Transport Category Airplanes, Nihad E. Daidzic, Ph.D., Sc.D. May 2019

#### Determination Of Rejected Landing Roll Runway Point-Of-No-Return And Go-Around In Transport Category Airplanes, Nihad E. Daidzic, Ph.D., Sc.D.

##### Nihad E. Daidzic, Dr.-Ing., D.Sc., ATP, CFII, MEI

The decelerate-accelerate-takeoff maneuver in transport category airplanes has been discussed. Mathematical model based on total energy conservation has been used to calculate the rejected landing point-of-no-return on a runway which will still enable the airplane to safely execute go-around and achieve regulatory screen heights and takeoff safety speeds. After this point has been exceeded or below the point-of-no-return speed no go-around should ever be considered. Landing long and fast and/or decelerating on slippery runways may very well result in an overrun which could be prevented if the go-around is attempted before reaching this critical runway point. The point-of-no-return on ...

May 2019

#### A Contribution Toward Better Understanding Of Overbanking Tendency In Fixed-Wing Aircraft, Nihad E. Daidzic

##### Nihad E. Daidzic, Dr.-Ing., D.Sc., ATP, CFII, MEI

The phenomenon of overbanking tendency for a rigid-body, fixed-wing aircraft is investigated. Overbanking tendency is defined as a spontaneous, unbalanced rolling moment that keeps increasing an airplaneās bank angle in steep turns and must be arrested by opposite aileron action. As stated by the Federal Aviation Administration, the overbanking tendency may lead to a loss of control, especially in instrument meteorological conditions. It was found in this study that the speed differential over wing halves in horizontal turns indeed creates a rolling moment that achieves maximum values for bank angles between 45 and 55 degrees. However, this induced rolling ...

Fast-Framing Ballistic Imaging Of Velocity In An Aerated Spray, David Sedarsky, James Gord, Campbell Carter, Terrence R. Meyer, Mark Linne Nov 2015

#### Fast-Framing Ballistic Imaging Of Velocity In An Aerated Spray, David Sedarsky, James Gord, Campbell Carter, Terrence R. Meyer, Mark Linne

##### Terrence R Meyer

We describe further development of ballistic imaging adapted for the liquid core of an atomizing spray. To fully understand spray breakup dynamics, one must measure the velocity and acceleration vectors that describe the forces active in primary breakup. This information is inaccessible to most optical diagnostics, as the signal is occluded by strong scattering in the medium. Ballistic imaging mitigates this scattering noise, resolving clean shadowgram-type images of structures within the dense spray region. We demonstrate that velocity data can be extracted from ballistic images of a spray relevant to fuel-injection applications, by implementing a simple, targeted correlation method for ...

Synthesis And Formation Mechanism Of Cuins2 Nanocrystals With A Tunable Phase, Chao Yu, Linlin Zhang, Long Tian, Dan Liu, Fanglin Chen, Cheng Wang Mar 2015

#### Synthesis And Formation Mechanism Of Cuins2 Nanocrystals With A Tunable Phase, Chao Yu, Linlin Zhang, Long Tian, Dan Liu, Fanglin Chen, Cheng Wang

##### Fanglin Chen

Chalcopyrite CuInS2 (CIS) hierarchical structures composed of nanoflakes with a thickness of about 5 nm were synthesized by a facial solvothermal method. The thermodynamically metastable wurtzite phase CIS would be obtained by using InCl3 instead of In(NO3)3 as In precursor. The effects of the In precursor and the volume of concentrated HCl aqueous solution on the phases and morphologies of CIS nanocrystals have been systematically investigated. Experimental results indicated that the obtained phases of CIS nanocrystals were predominantly determined by precursor-induced intermediate products. The photocatalytic properties of chalcopyrite and wurtzite CIS in visible-light-driven degradation of ...

Controlling Nanoparticles Formation In Molten Metallic Bilayers By Pulsed-Laser Interference Heating, Mikhail Khenner, Sagar Yadavali, Ramki Kalyanaraman Dec 2011

#### Controlling Nanoparticles Formation In Molten Metallic Bilayers By Pulsed-Laser Interference Heating, Mikhail Khenner, Sagar Yadavali, Ramki Kalyanaraman

##### Mikhail Khenner

The impacts of the two-beam interference heating on the number of core-shell and embedded nanoparticles and on nanostructure coarsening are studied numerically based on the non-linear dynamical model for dewetting of the pulsed-laser irradiated, thin (< 20 nm) metallic bilayers. The model incorporates thermocapillary forces and disjoining pressures, and assumes dewetting from the optically transparent substrate atop of the reflective support layer, which results in the complicated dependence of light reflectivity and absorption on the thicknesses of the layers. Stabilizing thermocapillary effect is due to the local thickness-dependent, steady- state temperature profile in the liquid, which is derived based on the mean substrate temperature estimated from the elaborate thermal model of transient heating and melting/freezing. Linear stability analysis of the model equations set for Ag/Co bilayer predicts the dewetting length scales in the qualitative agreement with experiment.

Formation Of Organized Nanostructures From Unstable Bilayers Of Thin Metallic Liquids, Mikhail Khenner, Sagar Yadavali, Ramki Kalyanaraman Dec 2011

#### Formation Of Organized Nanostructures From Unstable Bilayers Of Thin Metallic Liquids, Mikhail Khenner, Sagar Yadavali, Ramki Kalyanaraman

##### Mikhail Khenner

Dewetting of pulsed-laser irradiated, thin (< 20 nm), optically reflective metallic bilayers on an optically transparent substrate with a reflective support layer is studied within the lubrication equations model. A steady-state bilayer film thickness (h) dependent temperature profile is derived based on the mean substrate temperature estimated from the elaborate thermal model of transient heating and melting/freezing. Large thermocapillary forces are observed along the plane of the liquid-liquid and liquid-gas interfaces due to this h-dependent temperature, which, in turn, is strongly influenced by the h-dependent laser light reflection and absorption. Consequently the dewetting is a result of the competition between thermocapillary and intermolecular forces. A linear analysis of the dewetting length scales established that the non-isothermal calculations better predict the experimental results as compared to the isothermal case within the bounding Hamaker coefficients. Subsequently, a computational non-linear dynamics study of the dewetting pathway was performed for Ag/Co and Co/Ag bilayer systems to predict the morphology evolution. We found that the systems evolve towards formation of different morphologies, including core-shell, embedded, or stacked nanostructure morphologies.

Stability Of A Strongly Anisotropic Thin Epitaxial Film In A Wetting Interaction With Elastic Substrate, Mikhail Khenner, Wondimu T. Tekalign, Margo S. Levine Dec 2010

#### Stability Of A Strongly Anisotropic Thin Epitaxial Film In A Wetting Interaction With Elastic Substrate, Mikhail Khenner, Wondimu T. Tekalign, Margo S. Levine

##### Mikhail Khenner

The linear dispersion relation for longwave surface perturbations, as derived by Levine et al. Phys. Rev. B 75, 205312 (2007) is extended to include a smooth surface energy anisotropy function with a variable anisotropy strength (from weak to strong, such that sharp corners and slightly curved facets occur on the corresponding Wulff shape). Through detailed parametric studies it is shown that a combination of a wetting interaction and strong anisotropy, and even a wetting interaction alone results in complicated linear stability characteristics of strained and unstrained films.

Dec 2010

#### Modeling Diverse Physics Of Nanoparticle Self-Assembly In Pulsed Laser-Irradiated Metallic Films, Mikhail Khenner

##### Mikhail Khenner

Presents physics behind dewetting of thin liquid films and mathematical/computational modeling tools (Educational/Research presentation for senior physics majors).

Reverse Logic - Safety Of Spent Nuclear Fuel Disposal, Antti Lempinen, Marianne Silvan-Lempinen Dec 2010

#### Reverse Logic - Safety Of Spent Nuclear Fuel Disposal, Antti Lempinen, Marianne Silvan-Lempinen

##### Antti Lempinen

No abstract provided.

The Homotopy Perturbation Method For Free Vibration Analysis Of Beam On Elastic Foundation, Baki Ozturk, Safa Bozkurt Coskun Dec 2010

#### The Homotopy Perturbation Method For Free Vibration Analysis Of Beam On Elastic Foundation, Baki Ozturk, Safa Bozkurt Coskun

##### Safa Bozkurt Coskun

In this study, the homotopy perturbation method (HPM) is applied to free vibration analysis of beam on elastic foundation. This numerical method is applied on three different axially loaded cases, namely: 1) one end fixed, the other end simply supported; 2) both ends fixed and 3) both ends simply supported cases. Analytical solutions and frequency factors are evaluated for different ratios of axial load N acting on the beam to Euler buckling load, Nr. The application of HPM for the particular problem in this study gives results which are in excellent agreement with both analytical solutions and the variational iteration ...

Morphological Evolution Of Single-Crystal Ultrathin Solid Films, Mikhail Khenner Mar 2010

#### Morphological Evolution Of Single-Crystal Ultrathin Solid Films, Mikhail Khenner

##### Mikhail Khenner

An introduction to mathematical modeling of ultrathin solid films and the role of such modeling in nanotechnologies: Educational/Research presentation for senior physics majors

A Tangent-Plane, Marker-Particle Method For The Computation Of Three-Dimensional Solid Surfaces Evolving By Surface Diffusion On A Substrate, Ping Du, Mikhail Khenner, Harris Wong Dec 2009

#### A Tangent-Plane, Marker-Particle Method For The Computation Of Three-Dimensional Solid Surfaces Evolving By Surface Diffusion On A Substrate, Ping Du, Mikhail Khenner, Harris Wong

##### Mikhail Khenner

We introduce a marker-particle method for the computation of three-dimensional solid surface morphologies evolving by surface diffusion. The method does not use gridding of surfaces or numerical differentiation, and applies to surfaces with finite slopes and overhangs. We demonstrate the method by computing the evolution of perturbed cylindrical wires on a substrate. We show that computed growth rates at early times agree with those predicted by the linear stability analysis. Furthermore, when the marker particles are redistributed periodically to maintain even spacing, the method can follow breakup of the wire.

Oscillatory And Monotonic Modes Of Long-Wave Marangoni Convection In A Thin Film, Sergey Shklyaev, Mikhail Khenner, Alexei Alabuzhev Dec 2009

#### Oscillatory And Monotonic Modes Of Long-Wave Marangoni Convection In A Thin Film, Sergey Shklyaev, Mikhail Khenner, Alexei Alabuzhev

##### Mikhail Khenner

We study long-wave Marangoni convection in a layer heated from below. Using the scaling k=O#1;#3;Bi#2;, where k is the wave number and Bi is the Biot number, we derive a set of amplitude equations. Analysis of this set shows presence of monotonic and oscillatory modes of instability. Oscillatory mode has not been previously found for such direction of heating. Studies of weakly nonlinear dynamics demonstrate that stable steady and oscillatory patterns can be found near the stability threshold.

Thickness-Dependent Spontaneous Dewetting Morphology Of Ultrathin Ag Films, H Krishna, R Sachan, J Strader, C Favazza, Mikhail Khenner, Ramki Kalyanaraman Dec 2009

#### Thickness-Dependent Spontaneous Dewetting Morphology Of Ultrathin Ag Films, H Krishna, R Sachan, J Strader, C Favazza, Mikhail Khenner, Ramki Kalyanaraman

##### Mikhail Khenner

We show here that the morphological pathway of spontaneous dewetting of ultrathin Ag films on SiO2 under nanosecond laser melting is found to be film thickness dependent. For films with thickness h between 2<=h<=9.5 nm, the intermediate stages of the morphology consisted of bicontinuous structures. For films 11.5<=h<=20 nm, the intermediate stages consisted of regularly-sized holes. Measurement of the characteristic length scales for different stages of dewetting as a function of film thickness showed a systematic increase, which is consistent with the spinodal dewetting instability over the entire thickness range investigated. This change in morphology with thickness is consistent with observations made previously for polymer films [A. Shama et al, Phys. Rev. Lett., v81, pp3463 (1998); R. Seemann et al, J. Phys. Cond. Matt., v13, pp4925, (2001)]. Based on the behavior of free energy curvature that incorporates intermolecular forces, we have estimated the morphological transition thickness for Ag on SiO2. The theory predictions agree well with observations for Ag. These results show that it is possible to form a variety of complex Ag nanomorphologies in a consistent manner, which could be useful in optical applications of Ag surfaces, such as in surface enhanced Raman sensing.

#### Thermocapillary Effects In Driven Dewetting And Self-Assembly Of Pulsed Laser-Irradiated Metallic Films, Mikhail Khenner

##### Mikhail Khenner

A mathematical model for the evolution of pulsed laser-irradiated, molten metallic films has been developed using the lubrication theory. The heat transfer problem that incorporates the absorbed heat from a single laser beam or the interfering laser beams is solved analytically. Using this temperature field, we derive the 3D long-wave evolution PDE for the film height. To get insights into dynamics of dewetting, we study the 2D version of the evolution equation by means of a linear stability analysis and by numerical simulations. The stabilizing and destabilizing effects of various system parameters, such as the reflectivity, the peak laser beam ...

Thermocapillary Effects In Driven Dewetting And Self-Assembly Of Pulsed Laser-Irradiated Metallic Films, Agegnehu Atena, Mikhail Khenner Dec 2008

#### Thermocapillary Effects In Driven Dewetting And Self-Assembly Of Pulsed Laser-Irradiated Metallic Films, Agegnehu Atena, Mikhail Khenner

##### Mikhail Khenner

In this paper the lubrication-type dynamical model is developed of a molten, pulsed laser-irradiated metallic film. The heat transfer problem that incorporates the absorbed heat from a single beam or interfering beams is solved analytically. Using this temperature field, we derive the 3D long-wave evolution PDE for the film height. To get insights into dynamics of dewetting, we study the 2D version of the evolution equation by means of a linear stability analysis and by numerical simulations. The stabilizing and destabilizing effects of various system parameters, such as the peak laser beam intensity, the film optical thickness, the Biot and ...

Morphologies And Kinetics Of A Dewetting Ultrathin Solid Film, Mikhail Khenner Dec 2007

#### Morphologies And Kinetics Of A Dewetting Ultrathin Solid Film, Mikhail Khenner

##### Mikhail Khenner

The surface evolution model based on geometric partial differential equation is used to numerically study the kinetics of dewetting and dynamic morphologies for the localized pinhole defect in the surface of the ultrathin solid film with the strongly anisotropic surface energy. Depending on parameters such as the initial depth and width of the pinole, the strength of the attractive substrate potential and the strength of the surface energy anisotropy, the pinhole may either extend to the substrate and thus rupture the film, or evolve to the quasiequilibrium shape while the rest of the film surface undergoes phase separation into a ...

Enhanced Stability Of A Dewetting Thin Liquid Film In A Single-Frequency Vibration Field, Sergey Shklyaev, Mikhail Khenner, Alexei Alabuzhev Dec 2007

#### Enhanced Stability Of A Dewetting Thin Liquid Film In A Single-Frequency Vibration Field, Sergey Shklyaev, Mikhail Khenner, Alexei Alabuzhev

##### Mikhail Khenner

Dynamics of a thin dewetting liquid film on a vertically oscillating substrate is considered. We assume moderate vibration frequency and large (compared to the mean film thickness) vibration amplitude. Using the lubrication approximation and the averaging method, we formulate the coupled sets of equations governing the pulsatile and the averaged fluid flows in the film, and then derive the nonlinear amplitude equation for the averaged film thickness. We show that there exists a window in the frequency-amplitude domain where the parametric and shear-flow instabilities of the pulsatile flow do not emerge. As a consequence, in this window the averaged description ...