Open Access. Powered by Scholars. Published by Universities.®

Applied Mechanics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Applied Mechanics

Composite Pegboard, Asa J. Cusick, Luis Corrales, Joelle Hylton, Wyatt Pauley Jun 2021

Composite Pegboard, Asa J. Cusick, Luis Corrales, Joelle Hylton, Wyatt Pauley

Mechanical Engineering

Many of those with mobility limitations who are told they will need a wheelchair for the rest of their lives can actually begin to stand and walk again given the proper tools and support. The current design for a wheelchair seeking to support this process is overly complex, heavy, and exhibits some features that could potentially pose a serious health hazard to those using it. The scope of this project is to aid in the design of an adaptable composite wheelchair frame that can be both lightweight and strong, while still allowing for physical diversity of potential users. Through research …


Effects Of Bio-Composites In Corrugated Sandwich Panels Under Edgewise Compression Loading, Jalen Christopher Mano May 2019

Effects Of Bio-Composites In Corrugated Sandwich Panels Under Edgewise Compression Loading, Jalen Christopher Mano

Master's Theses

Present day composite sandwich panels provide incredible strength. Their largest problem, however, is early bonding failure between the core and the skin. This is due to the low bonding surface area of present cores like honeycomb. Corrugated structures could provide a remedy for this with their much larger bonding surface area. Corrugated structures have extreme mechanical properties deeming them particularly useful in aerospace and automotive applications. However, previous research has shown that the stiffness of carbon fiber causes debonding and drastic failure when used as both a core and a skin. Bio-composites have properties that could strengthen the corrugated sandwich …


Reinventing The Wheel, Esther K. Unti, Ahmed Z. Shorab, Patrick B. Kragen, Adam M. Menashe Dec 2018

Reinventing The Wheel, Esther K. Unti, Ahmed Z. Shorab, Patrick B. Kragen, Adam M. Menashe

Mechanical Engineering

Reinventing the Wheel selected tires and designed wheels for the 2018 Cal Poly, San Luis Obispo Formula SAE combustion vehicle. Available tire options were evaluated for steady-state and transient performance as well as vehicle integration. A single-piece composite wheel with hollow spokes was designed to meet stiffness, strength, and tolerance requirements. A detailed study of wheel loading and geometric structural efficiency was performed. Finite element analysis was used to iterate the geometry and laminate. A two-piece male mold was designed and machined to manufacture the wheel. Removable silicone inserts were used to create the hollow spokes.


Prove Endurance Car Front Suspension, Lauren A. Williams, Logan Simon, Justine G. Kwan Jun 2018

Prove Endurance Car Front Suspension, Lauren A. Williams, Logan Simon, Justine G. Kwan

Mechanical Engineering

This document details the collaborative Mechanical Engineering Senior Project with Cal Poly PROVE Lab on PROVE Lab’s Project 2; an electric vehicle designed to travel 1000 miles on a single charge. Logan Simon, Justine Kwan, and Lauren Williams are given the challenge of designing an innovative proof of concept front suspension suspension for this vehicle.

After detailed research of new suspension systems, it was determined that the innovative nature could be in the form of unique manufacturing methods, materials use, or mechanical design. At this point in time, this vehicle is a purely conceptual design with no concrete requirements. Therefore …


Drape Forming Machine, Adam Johnson, Will Schlosser, Brian Miller Jun 2013

Drape Forming Machine, Adam Johnson, Will Schlosser, Brian Miller

Mechanical Engineering

The goal of this project was to build a prototype machine that formed multiple sheets of debulked pre-preg OOA carbon fiber into a 2-foot long trapezoidal shape. The machine was required to do this process semi-automatically.


Supermileage Team - Urban Concept Competition Vehicle Chassis Design Report, Andrew Allport, Kevin Braico, Kevin Charles, George Kyi, William Lai Dec 2009

Supermileage Team - Urban Concept Competition Vehicle Chassis Design Report, Andrew Allport, Kevin Braico, Kevin Charles, George Kyi, William Lai

Mechanical Engineering

This research and design project was proposed by the Cal Poly Supermileage team. They have requested for our team to design an Urban Concept car, a new category of vehicles to compete for fuel efficiency in the Shell Eco-marathon in 2010. The primary focus of our team is in the design and construction of a chassis the Supermileage team can use for the 2010 competition in Fontana, CA. This design must meet dimensional and functional requirements set by Shell while being designed to maximize efficiency in the competition.

There were various chassis concepts under consideration that would possibly work for …