Open Access. Powered by Scholars. Published by Universities.®

Applied Mechanics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 16 of 16

Full-Text Articles in Applied Mechanics

Heat Transfer Experiment: Energy Conservation, Ben Ward, Brett Wallace, Ryan Waltman Dec 2013

Heat Transfer Experiment: Energy Conservation, Ben Ward, Brett Wallace, Ryan Waltman

Mechanical Engineering

This proposal, prepared for the Mechanical Engineering Department by the HTEC design team will redesign and replace the current energy conversion lab that is inaccurate and out of date. The team will evaluate methods of energy conversion, specifically using braking systems, as well as existing labs in order to design an accurate and relatable experiment for this lab. The project team will work with Professor Kim Shollenberger in order to design an experiment that demonstrates energy conversion through the first law of thermodynamics while utilizing a common device that is practical in student’s lives. The final result of this project …


Design Of An Automatic Wood Trimming Machine, Van Ho, Nicholas Maskal, Andrew Rutland Dec 2013

Design Of An Automatic Wood Trimming Machine, Van Ho, Nicholas Maskal, Andrew Rutland

Mechanical Engineering

This final design report, prepared for Sunrise Arts by the Cal Poly design team Mahogany Automation, details the year-long process in which the team of three engineering students designed and built an automated wooden -plank edge trimming machine that incorporates anti-jamming and continuous loading features. The team has examined current woodworking machines and features available on the industrial and commercial market, and used these as guides along with device requirements set by the project sponsor, Bruce Palmer. The focus has been on designing the simplest and most cost effective device that allows operators to make production runs of wooden slats …


Large-Displacement Lightweight Armor, Eric C. Clough Dec 2013

Large-Displacement Lightweight Armor, Eric C. Clough

Master's Theses

Randomly entangled fibers forming loosely bound nonwoven structures are evaluated for use in lightweight armor applications. These materials sacrifice volumetric efficiency in order to realize a reduction in mass versus traditional armor materials, while maintaining equivalent ballistic performance. The primary material characterized, polyester fiberfill, is shown to have improved ballistic performance over control samples of monolithic polyester as well as 1095 steel sheets. The response of fiberfill is investigated at a variety of strain rates, from quasistatic to ballistic, under compression, tension, and shear deformation to elucidate mechanisms at work during ballistic defeat. Fiberfill’s primary mechanisms during loading are fiber …


Loaded Shift Tester Sram, Nick Cox, Sam Shaffer, Michael Polka Jun 2013

Loaded Shift Tester Sram, Nick Cox, Sam Shaffer, Michael Polka

Mechanical Engineering

This report details the design, manufacturing, and testing of a loaded shift tester for the SRAM Bicycle Corporation. The machine is used to perform developmental and qualification tests on various bicycle drivetrain components. Using SolidWorks, the design team created a solid model of the machine on the computer, then ordered and manufactured the parts required to build it. The machine was tested to ensure that all the parts worked together, and was finally delivered to SRAM when it was deemed ready.


Hoist To Transfer Athletes From Wheelchair Into A Kayak, Jennifer Batryn, Javier Mendez, Kyle Mooney Jun 2013

Hoist To Transfer Athletes From Wheelchair Into A Kayak, Jennifer Batryn, Javier Mendez, Kyle Mooney

Mechanical Engineering

No abstract provided.


Adaptive Golf Device, Nick Baker, Katie Delaurentis, Grant Martens, Liz Allison Jun 2013

Adaptive Golf Device, Nick Baker, Katie Delaurentis, Grant Martens, Liz Allison

Mechanical Engineering

Our primary objective was to design a golf device that enables its user, who has limited leg movement and control, to be able to produce a balanced golf swing. Ultimately, the device maximizes the golfer's independence, and increases the accuracy of and power behind each shot. Specifically, the device was designed around the needs and requirements of Dr. Joshua Pate, Professor of Adapted Recreation at James Madison University. Dr. Pate has cerebral palsy limiting his lower body mobility and making it difficult for him to produce a balanced golf swing.


Exploration Station Kidshake Table, Jeremy Duhe, Philip Hopkins, Matt Ostiguy, Samantha Weiner Jun 2013

Exploration Station Kidshake Table, Jeremy Duhe, Philip Hopkins, Matt Ostiguy, Samantha Weiner

Mechanical Engineering

The KIDShake Table is an all mechanical earthquake shake table sponsored by the Exploration Station Children's Museum of Grover Beach. This interactive exhibit has two working mechanisms, a hand crank and pull rope, that provide two axis movement for knocking down block structures. This table was built and designed for a target age of 10 years.


Drape Forming Machine, Adam Johnson, Will Schlosser, Brian Miller Jun 2013

Drape Forming Machine, Adam Johnson, Will Schlosser, Brian Miller

Mechanical Engineering

The goal of this project was to build a prototype machine that formed multiple sheets of debulked pre-preg OOA carbon fiber into a 2-foot long trapezoidal shape. The machine was required to do this process semi-automatically.


Bicycle Wheel Test Machine, Dylan Harper, Kevin Hom, Ross Williams Jun 2013

Bicycle Wheel Test Machine, Dylan Harper, Kevin Hom, Ross Williams

Mechanical Engineering

In recent years, the cycling industry has witnessed huge advancements in bicycle components and materials. The age old goals of speed and low weight are still present today, but the pursuit of these goals may be reducing the structural stability of various components integral to wheel performance, including the wheel hub bearings. These bearings are invaluable to bicycles but little is known about how the forces and loads applied to a bicycle affect the performance of these bearings. Broken axles and hubs are indicators of significant stresses within the hub, but little is known about how the resulting deformation affects …


Dedion Axle Senior Project, Nick Schraan, Mark Shushnar, William Swenson, Ramy Tall Jun 2013

Dedion Axle Senior Project, Nick Schraan, Mark Shushnar, William Swenson, Ramy Tall

Mechanical Engineering

The sponsor, EV Grid Inc. is a company looking to the future with the development of a vehicle to grid infrastructure. The vehicle in development is a Ford E-250 Van which had been converted to electric drive with a front motor, rear drive layout. The sponsor wanted to move the electric motor to the rear and develop an axle to support this change. By eliminating the driveshaft, a more efficient use of battery space could be utilized. The goal of this project is to design and fabricate a prototype deDion rear axle which incorporates a system of drive components that …


Multilink Suspension & Steering System For Cal Poly Formula Electric, Tristan French, Alissa Roland, Maximilian Sluiter Jun 2013

Multilink Suspension & Steering System For Cal Poly Formula Electric, Tristan French, Alissa Roland, Maximilian Sluiter

Mechanical Engineering

The purpose of this project was to design a suspension that would improve the performance of the Cal Poly SAE Formula Electric car around a racing track Performance would be quantified through skidpad, slalom, and straight-line acceleration tests as well as autocross lap times. The approach to meeting the objective was to increase the steady-state lateral acceleration and quicken the transient response while maintaining predictable handling so that the driver could extract maximum performance from the car.

The car uses round-section (motorcycle) tires at a large negative camber angle because the lateral force generated by a pair of negatively-cambered tires …


Evs Sports Knee Brace Testing Machinefinal Design Report, Silvia Aguilar, Nick Mattison, Chris Mccarthy Jun 2013

Evs Sports Knee Brace Testing Machinefinal Design Report, Silvia Aguilar, Nick Mattison, Chris Mccarthy

Mechanical Engineering

The purpose of this document is to report on the development of a test machine for EVS’ Web and Axis knee braces. Between September 2012 and June 2013, Team CSN, comprising of Nick Mattison, Silvia Aguilar, and Chris McCarthy, have methodically planned, designed, built, and tested this machine. The overarching goal of this unique machine is to address the need for both hyperextension and fatigue testing. From here on out this report dives into details of the machine with an Appendix C reporting testing results of said knee braces.


Rapid Decompression Containment System, Evan Domingue, Michelle Rudney, Daniel Trees Jun 2013

Rapid Decompression Containment System, Evan Domingue, Michelle Rudney, Daniel Trees

Mechanical Engineering

Cal Poly students; Evan Domingue, Michelle Rudney and Daniel Trees; are working with General Atomics Aeronautical Systems, Inc. (GA, ASI) and engineer John Wilcox to complete a senior project. The senior project is focused on finding a solution to meet the requirement set forth in MIL-HDBK 1791 4.2.5.2 for rapid decompression which requires cargo items to be designed with pressure relief devices or to be configured for air shipment as to prevent any part from becoming a projectile in the event of catastrophic loss of aircraft cabin pressure. The goal of this project is to design a safe, cost-effective, and …


Rebounder Fatigue Test Machine, Caroline Reeves, Will Robertson, Ethan Flory Jun 2013

Rebounder Fatigue Test Machine, Caroline Reeves, Will Robertson, Ethan Flory

Mechanical Engineering

JumpSport, a company that designs and sells trampolines and trampoline accessories, has sponsored this senior project team to design, build, and test a trampoline fatigue test machine. The machine must simulate a person jumping on the trampoline to test the life of JumpSport’s fitness trampolines and kids’ trampolines. Partway through the design process, the objectives were altered and this senior project team was tasked with merging with another Cal Poly senior project group to create an all-inclusive test machine to accommodate both full-trampoline testing and individual bungee cord testing.

The final design is centered on a slider crank linkage driven …


Design, Fabrication, And Testing Of An Emr Based Orbital Debris Impact Testing Platform, Jeffrey J. Maniglia Jr. Jun 2013

Design, Fabrication, And Testing Of An Emr Based Orbital Debris Impact Testing Platform, Jeffrey J. Maniglia Jr.

Master's Theses

This paper describes the changes made from Cal Poly’s initial railgun system, the Mk. 1 railgun, to the Mk. 1.1 system, as well as the design, fabrication, and testing of a newer and larger Mk. 2 railgun system. The Mk. 1.1 system is developed as a more efficient alteration of the original Mk. 1 system, but is found to be defective due to hardware deficiencies and failure, as well as unforeseen efficiency losses. A Mk. 2 system is developed and built around donated hardware from the Naval Postgraduate School. The Mk. 2 system strove to implement an efficient, augmented, electromagnetic …


Transient Small Wind Turbine Tower Structural Analysis With Coupled Rotor Dynamic Interaction, George R. Katsanis May 2013

Transient Small Wind Turbine Tower Structural Analysis With Coupled Rotor Dynamic Interaction, George R. Katsanis

Master's Theses

Structural dynamics is at the center of wind turbine tower design - excessive vibrations can be caused by a wide range of environmental and mechanical sources and can lead to reduced component life due to fatigue, noise, and impaired public perception of system integrity. Furthermore, periodic turbulent wind conditions can cause system resonance resulting in significantly increased structural loads. Structural vibration issues may become exacerbated in small wind applications where the analytical and experimental resources for system verification and optimization are scarce. This study combines several structural analysis techniques and packages them into a novel and integrated form that can …