Open Access. Powered by Scholars. Published by Universities.®

Applied Mechanics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Applied Mechanics

Adjustable Head Tube Angle Headset, Glenn Petersen, Ben Harper, Josh Martin, Dylan Prins Jun 2021

Adjustable Head Tube Angle Headset, Glenn Petersen, Ben Harper, Josh Martin, Dylan Prins

Mechanical Engineering

This final design review report describes the design, manufacture, and test process of a bicycle headset capable of quickly and easily adjusting the effective head tube angle. The evolution of mountain bike geometry has forced bike designers to compromise between climbing and descending performance when choosing a head tube angle. A headset capable of quickly adjusting the effective head tube angle would allow riders to optimize their bike’s geometry for different stages of riding. This report details the research, idea generation, concept development and selection, design, manufacturing, and testing of our adjustable head tube angle headset.


Fluid Power Vehicle Challenge - The Incompressibles - Final Design Report, Nicholas Gholdoian, Russell Posin, David Vitt, Alex Knickerbocker, Kyle Franck, Julian Rodkiewicz Jun 2019

Fluid Power Vehicle Challenge - The Incompressibles - Final Design Report, Nicholas Gholdoian, Russell Posin, David Vitt, Alex Knickerbocker, Kyle Franck, Julian Rodkiewicz

Mechanical Engineering

This report provides a comprehensive description of the research, analysis and design work that The Incompressibles have completed thus far in the senior project process. This document includes all the work that The Incompressibles have completed for the team’s Preliminary Design Review (PDR), Critical Design Review (CDR), the work leading up to the 2019 FPVC competiton and the competition results. This report includes the initial research that the team completed for the fluid power competition, first iterations of designs, final iterations of designs, manufacturing results and processes, and finally testing and results from competition. With a new design for the …


Recumbent Bicycle Balancing Aid, James Hager Jan 2019

Recumbent Bicycle Balancing Aid, James Hager

Williams Honors College, Honors Research Projects

For our senior design project, our team will be consulting to create a balancing aid system intended for the recumbent bicycle shown below in Figure 1. The owner of the bicycle is Robert Henderson, a former United States Navy sailor from Northeast Ohio who picked up biking and skiing while he was stationed in Maine in the late 80’s. While there, he took to the mountains on the rugged terrain and brought this passion of biking back home to share with his wife, Johanna once he completed his service to his country. Biking became an integral part of the …


Single Arm Recumbent Bicycle, Alexander Borsotti, Ryan Westermann, Sean Liston Dec 2018

Single Arm Recumbent Bicycle, Alexander Borsotti, Ryan Westermann, Sean Liston

Mechanical Engineering

The goal of this report is to outline and cover the scope of work for the Single Arm Recumbent Bicycle Senior Project. The report will give an introduction of the problem, a background of the existing research or products relating to our project, the objectives of our project, our project management plan, our final design, manufacturing, testing, our project management, and final recommendations for improving the final design. The team is being supported by the Quality of Life Program, a non-profit organization that works to improve the lives of those injured in duty while serving our nation.

Up until now, …


Parker Hannifin Chainless Challenge 2014-15 Senior Design Project, Matt Pallotta, Nathan Klammer, Kemper Whaley, Jack Rechtin Apr 2015

Parker Hannifin Chainless Challenge 2014-15 Senior Design Project, Matt Pallotta, Nathan Klammer, Kemper Whaley, Jack Rechtin

Mechanical Engineering

California Polytechnic State University has been invited to compete in the Parker Hannifin Chainless Challenge Competition in 2014-15. Cal Poly has chosen a team of mechanical engineering students to take part. We have named our team “Bike Under Pressure” and all references as such refer to the team.

The challenge is to build a bicycle which does not have a solid mechanical connection between the power input of the rider to the power output of the wheel(s). After conducting research into different previous designs and brainstorming designs of their own, Bike Under Pressure developed two conceptual designs. One design featured …


Loaded Shift Tester Sram, Nick Cox, Sam Shaffer, Michael Polka Jun 2013

Loaded Shift Tester Sram, Nick Cox, Sam Shaffer, Michael Polka

Mechanical Engineering

This report details the design, manufacturing, and testing of a loaded shift tester for the SRAM Bicycle Corporation. The machine is used to perform developmental and qualification tests on various bicycle drivetrain components. Using SolidWorks, the design team created a solid model of the machine on the computer, then ordered and manufactured the parts required to build it. The machine was tested to ensure that all the parts worked together, and was finally delivered to SRAM when it was deemed ready.


Bicycle Wheel Test Machine, Dylan Harper, Kevin Hom, Ross Williams Jun 2013

Bicycle Wheel Test Machine, Dylan Harper, Kevin Hom, Ross Williams

Mechanical Engineering

In recent years, the cycling industry has witnessed huge advancements in bicycle components and materials. The age old goals of speed and low weight are still present today, but the pursuit of these goals may be reducing the structural stability of various components integral to wheel performance, including the wheel hub bearings. These bearings are invaluable to bicycles but little is known about how the forces and loads applied to a bicycle affect the performance of these bearings. Broken axles and hubs are indicators of significant stresses within the hub, but little is known about how the resulting deformation affects …