Open Access. Powered by Scholars. Published by Universities.®

Applied Mechanics Commons

Open Access. Powered by Scholars. Published by Universities.®

Aerospace Engineering

Institution
Keyword
Publication Year
Publication
Publication Type
File Type

Articles 1 - 30 of 102

Full-Text Articles in Applied Mechanics

Cfrp Delamination Density Propagation Analysis By Magnetostriction Theory, Brandon Eugene Williams Dec 2023

Cfrp Delamination Density Propagation Analysis By Magnetostriction Theory, Brandon Eugene Williams

All Dissertations

While Carbon Fiber Reinforced Polymers (CFRPs) have exceptional mechanical properties concerning their overall weight, their failure profile in demanding high-stress environments raises reliability concerns in structural applications. Two crucial limiting factors in CFRP reliability are low-strain material degradation and low fracture toughness. Due to CFRP’s low strain degradation characteristics, a wide variety of interlaminar damage can be sustained without any appreciable change to the physical structure itself. This damage suffered by the energy transfer from high- stress levels appears in the form of microporosity, crazes, microcracks, and delamination in the matrix material before any severe laminate damage is observed. This …


Kwad - Ksu All Weather Autonomous Drone, Nick Farinacci, Sebastian Gomez, Stewart Baker, Ed Sheridan Nov 2023

Kwad - Ksu All Weather Autonomous Drone, Nick Farinacci, Sebastian Gomez, Stewart Baker, Ed Sheridan

Symposium of Student Scholars

"KWAD" or "KSU all-Weather Autonomous Drone" project was sponsored by Ultool, LLC to the KSU Research and Service Foundation to create a lightweight drone capable of capturing HD video during all-weather operations. The conditions of all-weather operation include rainfall of one inch per hour and wind speeds of up to twenty miles per hour. In addition, a global minimum structural safety factor of two is required to ensure the system's integrity in extreme weather conditions. Potential mission profiles include autonomous aerial delivery, topological mapping in high moisture areas, security surveillance, search and rescue operations, emergency transportation of medical supplies, and …


Development, Experimental Validation, And Progressive Failure Modeling Of An Ultra-Thin High Stiffness Deployable Composite Boom For In-Space Applications, Jimesh D. Bhagatji Aug 2023

Development, Experimental Validation, And Progressive Failure Modeling Of An Ultra-Thin High Stiffness Deployable Composite Boom For In-Space Applications, Jimesh D. Bhagatji

Mechanical & Aerospace Engineering Theses & Dissertations

To maximize the capabilities of nano- and micro-class satellites, which are limited by their size, weight, and power, advancements in deployable mechanisms with a high deployable surface area to packaging volume ratio are necessary. Without progress in understanding the mechanics of high-strain materials and structures, the development of compact deployable mechanisms for this class of satellites would be difficult. This research focuses on fabrication, experimental testing, and progressive failure modelling to study the deformation of an ultra-thin composite beam. The research study examines deformation modes of a boom under repetitive pure bending loads using 4-point bending setup. The material and …


Disc Golf Throwing Robot, Nevada S. Schultz, Sydney M. Lewis, Erick Edmundo Daza, Rachel Alysse Greenberg, Peter M. Kean Jun 2023

Disc Golf Throwing Robot, Nevada S. Schultz, Sydney M. Lewis, Erick Edmundo Daza, Rachel Alysse Greenberg, Peter M. Kean

Mechanical Engineering

Disc golf companies need better methods to test disc flight. The scope of this project is to create a disc throwing robot that can throw a disc golf driver 450-500 feet, with control over the speed, spin, and release angle. Research shows that multiple disc-throwing products exist; however, none meet the full requirements of this project. The Cal Poly senior project design team created a proof-of-concept machine. This prototype started as a two-wheel mechanism. Eventually, a third wheel was added, allowing for complete control over disc spin. The three-wheel prototype reached 62 mph when perfectly calibrated. The prototype is accurate, …


Molecular Dynamics Modeling Of Polymers For Aerospace Composites, Swapnil Sambhaji Bamane Jan 2023

Molecular Dynamics Modeling Of Polymers For Aerospace Composites, Swapnil Sambhaji Bamane

Dissertations, Master's Theses and Master's Reports

Polymer matrix composite materials are widely used as structural materials in aerospace and aeronautical vehicles. Resin/reinforcement wetting and the effect of polymerization on the thermo-mechanical properties of the resin are key parameters in the manufacturing of aerospace composite materials. Determining the contact angle between combinations of liquid resin and reinforcement surfaces is a common method for quantifying wettability. It is challenging to determine contact angle values experimentally of high-performance resins on CNT materials such as CNT, graphene, bundles or yarns, and BNNT surfaces. It is also experimentally difficult to determine the effect of polymerization reaction on material properties of a …


Optimal Path Planning For Aerial Robots Using Genetic Algorithm, Anna Puigvert I Juan Jan 2023

Optimal Path Planning For Aerial Robots Using Genetic Algorithm, Anna Puigvert I Juan

Graduate Theses, Dissertations, and Problem Reports

This thesis presents a path optimization solution for a robot in two different constrained 3-dimensional (3D) environments. The robot is required to travel from its current position to a goal position following minimum cost paths (optimal paths). The first environment has 3D obstacles that interfere with the robot’s path. The path cost for this environment accounts for the minimum distance traveled by the robot from the start to the goal position while avoiding obstacles. The second environment is the atmosphere of Venus, specifically a flyable region of this atmosphere with characteristics similar to Earth’s. This environment has strong westward winds …


Novel Locomotion Methods In Magnetic Actuation And Pipe Inspection, Adam Cox Dec 2022

Novel Locomotion Methods In Magnetic Actuation And Pipe Inspection, Adam Cox

Mechanical Engineering Research Theses and Dissertations

There is much room for improvement in tube network inspections of jet aircraft. Often, these inspections are incomplete and inconsistent. In this paper, we develop a Modular Robotic Inspection System (MoRIS) for jet aircraft tube networks and a corresponding kinematic model. MoRIS consists of a Base Station for user control and communication, and robotic Vertebrae for accessing and inspecting the network. The presented and tested design of MoRIS can travel up to 9 feet in a tube network. The Vertebrae can navigate in all orientations, including smooth vertical tubes. The design is optimized for nominal 1.5" outside diameter tubes. We …


Foundations For Finite-State Modelling Of A Two-Dimensional Airfoil That Reverses Direction, Jake Michael Oscar Welsh Aug 2022

Foundations For Finite-State Modelling Of A Two-Dimensional Airfoil That Reverses Direction, Jake Michael Oscar Welsh

McKelvey School of Engineering Theses & Dissertations

Current 3-D finite-state wake models are incapable of simulating a maneuver in which the sign of the free-stream velocity changes direction and the rotor enters its own wake -- as might occur in the case of a helicopter which ascends and then descends. It is the purpose of this work to create a 2-D finite-state wake model which is capable of handling changes in free-stream direction as a precursor to development of a 3-D model that can do the same.

The 2-D finite-state model used for reentry modifications is an existing model created by Peters, Johnson, and Karunamoorthy. By the …


Structural Sizing Of Post-Buckled Thermally Stressed Stiffened Panels, Walid Arsalane May 2022

Structural Sizing Of Post-Buckled Thermally Stressed Stiffened Panels, Walid Arsalane

Theses and Dissertations

Design of thermoelastic structures can be highly counterintuitive due to design-dependent loading and impact of geometric nonlinearity on the structural response. Thermal loading generates in-plane stresses in a restrained panel, but the presence of geometric nonlinearity creates an extension-bending coupling that results in considerable transverse displacement and variation in stiffness characteristics, and these affects are enhanced in post-bucking regimes. Herein a methodology for structural sizing of thermally stressed post-buckled stiffened panels is proposed and applied for optimization of the blade and hat stiffeners using a gradient-based optimizer. The stiffened panels are subjected to uniform thermal loading and optimized for minimum …


Wireless Power Transfer In Autonomous Mobile Microgrids, Carl Greene Jan 2022

Wireless Power Transfer In Autonomous Mobile Microgrids, Carl Greene

Dissertations, Master's Theses and Master's Reports

The ability to autonomously dock unmanned ground vehicles plays a key role in mobile micro-grids, where efficient power transfer is paramount. The approach utilized in this work allows for near-field wireless power transfer in remote locations with minimal support. Establishing a micro-grid power system connection autonomously using wireless power eliminates the arduous task of designing a complex, multiple degrees of freedom (MDOF) robotic arm. The work presented in this thesis focuses on both the hardware and software within the micro-grid system. This particular near-field wireless system consists of a primary and secondary set of modules, comprised of Litz wire coils, …


Carbon Fiber Recycling: Delamination System, Aaron Eastman Jan 2022

Carbon Fiber Recycling: Delamination System, Aaron Eastman

All Undergraduate Projects

The production of composite wings at Boeing causes carbon fiber waste and CWU Mechanical Engineering Technology students have been tasked in designing a carbon fiber recycling system. This project was brought forth and funded by the Joint Center for Aerospace Technology Innovation (JCATI). There are three subsystems that make up the carbon fiber recycling system, the delamination system, shredding system, and the oven. The purpose of this project was to increase the efficiency and effectiveness of the delamination system of the carbon fiber recycling system. The old system reached approximately 30-40 percent delamination with one pass through the system, and …


Jcati Carbon Fiber Shredder 2022, Parker Sudderth Jan 2022

Jcati Carbon Fiber Shredder 2022, Parker Sudderth

All Undergraduate Projects

This project is a potential solution to keep the carbon fiber waste from airplane manufacturing to a minimum, sponsored by the Joint Center for Aerospace Technology Innovation (JCATI). The design and assembly will be scalable for future industry application. The overall design of the whole carbon fiber recycler consists of a crusher, shredder, and oven. This report is on the caron fiber shredder module. The shredder is tasked with being able to shred the delaminated carbon fiber scrap that directly comes from the crusher. The operation must produce shreds in the proper size to be gathered and delivered to the …


Concept Evaluation And Development Of A Novel Approach For Integration Of Turbogeneration, Electrification And Supercharging On Heavy Duty Engines, Satyum Joshi Jan 2022

Concept Evaluation And Development Of A Novel Approach For Integration Of Turbogeneration, Electrification And Supercharging On Heavy Duty Engines, Satyum Joshi

Dissertations, Master's Theses and Master's Reports

While many technologies such as electrically assisted turbocharging, exhaust energy recovery and mild hybridization have already proven to significantly increase heavy-duty engine efficiency, the key challenge to their widespread adoption has been their cost effectiveness and packaging. This research specifically addresses these challenges through evaluation and development of a novel technology concept termed as the Integrated Turbogeneration, Electrification and Supercharging (ITES) system. The concept integrates a secondary compressor, a turbocompound/expander turbine and an electric motor through a planetary gearset into the engine cranktrain. The approach enables a reduced system cost and space-claim, while maximizing the efficiency benefits of independent technologies. …


Investigations Of The Low Temperature Combustion Regions And Emissions Characteristics Of Aerospace F24 In A Constant Volume Combustion Chamber And A Common Rail Direct Injection Ci Engine, Richard C. Smith Iii Jan 2022

Investigations Of The Low Temperature Combustion Regions And Emissions Characteristics Of Aerospace F24 In A Constant Volume Combustion Chamber And A Common Rail Direct Injection Ci Engine, Richard C. Smith Iii

Electronic Theses and Dissertations

A study was conducted to investigate the low temperature combustion (LTC) regions of aerospace F24 and ULSD in the static setting of a CVCC and the dynamic setting of a CRDI research engine. This research is conducted to reduce in-cylinder emissions by understanding and implementing a technique to achieve an extended LTC. Emissions data for this study were collected during the operation of the CRDI research engine with a MKS 2030 FTIR and an AVL Microsoot 483. The parameters researched within the static setting of the CVCC included the determinations of the cool flames and NTC regions within the LTHR …


Mechanical Interfacial Locking And Multiscale Modeling Of Reinforced Thermoplastic Composites For Structural Applications, Anmol Kothari Dec 2021

Mechanical Interfacial Locking And Multiscale Modeling Of Reinforced Thermoplastic Composites For Structural Applications, Anmol Kothari

All Dissertations

The ever-growing pressure of reducing the adverse impact of transportation systems on environment has pushed industries towards fuel-efficient and sustainable solutions. While several approaches have been used to improve fuel efficiency, the light-weighting of structural components has proven broadly effective. In this regard, reinforced thermoplastic composites (RTPC), owing to their high recyclability, higher impact strength and fast cycle times, have become competitive candidates at an industrial scale. However, to implement RTPC toward large scale structural applications several challenges pertaining to material design and manufacturing effects need to be addressed. To this end, a computational study is carried out to address …


Complicating Factors In Hydraulic Jumps: The Effects Of Earth's Rotation, Muveno Pascoal Elias Mucaza Sep 2021

Complicating Factors In Hydraulic Jumps: The Effects Of Earth's Rotation, Muveno Pascoal Elias Mucaza

Electronic Thesis and Dissertation Repository

Hydraulic jumps at the interface of stratified rotating fluids are studied. The flow is de- fined with continuous density and velocity profiles, with the velocity in each layer changing (upstream shear). The study is conducted in jumps defined by an imposed velocity transition, and jumps developing over a topography.

The numerical simulations conducted showed the qualitative structure of the flow changing in the cross-width direction, as well as the size and amount of turbulence of the jumps. Mixing in these jumps was shown to increase towards the side of the domain where the jumps were larger and more turbulent. The …


Fluid-Structure Interaction Of Nrel 5-Mw Wind Turbine, Mohamed Sayed Elkady Abd-Elhay Jun 2021

Fluid-Structure Interaction Of Nrel 5-Mw Wind Turbine, Mohamed Sayed Elkady Abd-Elhay

Theses and Dissertations

Wind energy is considered one of the major sources of renewable energy. Nowadays, wind turbine blades could exceed 100 m to maximize the generated power and minimize produced energy cost. Due to the enormous size of the wind turbines, the blades are subjected to failure by aerodynamics loads or instability issues. Also, the gravitational and centrifugal loads affect the wind turbine design because of the huge mass of the blades. Accordingly, wind turbine simulation became efficient in blade design to reduce the cost of its manufacturing. The fluid-structure interaction (FSI) is considered an effective way to study the turbine's behavior …


Prediction Of In-Plane Stiffnesses And Thermomechanical Stresses In Cylindrical Composite Cross-Sections, Bryson M. Chan Jun 2021

Prediction Of In-Plane Stiffnesses And Thermomechanical Stresses In Cylindrical Composite Cross-Sections, Bryson M. Chan

Master's Theses

Accurate mechanical analysis of composite structures is necessary for the prediction of laminate behavior. Cylindrical composite tubes are a mainstay in many structural applications. The fundamental design of circular composite cross-sections necessitates the development of a comprehensive composite lamination theory. A new analytical method is developed to characterize the behavior of thin-walled composite cylindrical tubes using a modified plate theory. A generated numerical solver can predict properties such as axial stiffness, bending stiffness, layer stresses, and layer strains in composite tubes subjected to combined mechanical loading and thermal effects. The model accounts for the curvature by transforming and translating the …


Accelerated Controller Tuning For Wind Turbines Under Multiple Hazards, Aly Mousaad Aly, Milad Rezaee Mar 2021

Accelerated Controller Tuning For Wind Turbines Under Multiple Hazards, Aly Mousaad Aly, Milad Rezaee

Faculty Publications

During their lifecycle, wind turbines can be subjected to multiple hazard loads, such as high-intensity wind, earthquake, wave, and mechanical unbalance. Excessive vibrations, due to these loads, can have detrimental effects on energy production, structural lifecycle, and the initial cost of wind turbines. Vibration control by various means, such as passive, active, and semi-active control systems provide crucial solutions to these issues. We developed a novel control theory that enables semi-active controller tuning under the complex structural behavior and inherent system nonlinearity. The proposed theory enables the evaluation of semi-active controllers’ performance of multi-degrees-of-freedom systems, without the need for time-consuming …


The Varied Thermal Response Of Magnetic Iron-Oxide Nanoparticles During Induction Heating In Liquid And Solid-Liquid Phase Change Mediums, Joshua Tompkins Dec 2020

The Varied Thermal Response Of Magnetic Iron-Oxide Nanoparticles During Induction Heating In Liquid And Solid-Liquid Phase Change Mediums, Joshua Tompkins

Graduate Theses and Dissertations

This study investigates the induction heating response of uncapped iron oxide nanoparticles sonically dispersed as a nanofluid and mechanically distributed in solid phase change materials. The nanoparticles examined have a mean diameter of 14.42 nm and are magnetically heated in an alternating magnetic field at an amplitude of 72.6 kA/m at frequencies of 217, 303, and 397 kHz. Nanoparticle characterization was undertaken through transition electron microscopy, x-ray diffraction, and dynamic light scattering when in suspension. Carrier fluids were characterized through viscosity, heat capacity, and density measurements which were used in the calorimetric calculation of the specific absorption rate (SAR) of …


Safran Seat Attachment System, Craig John Kimball, Tyler Bragg, Lynette Cox Jun 2020

Safran Seat Attachment System, Craig John Kimball, Tyler Bragg, Lynette Cox

Mechanical Engineering

This final design review (FDR) document outlines the senior design project being carried out by a team of mechanical engineering undergraduate students attending California Polytechnic State University, San Luis Obispo for Safran Seats in Santa Maria, CA. The project originally was to design, build, and test a universal attachment to secure a widebody business class seat to seven aircraft models with different seat track geometry. The goal was to design, document, and create a finished product that fits design, weight, and manufacturing requirements, as well as passes static 9G FWD testing. Structural analysis, manufacturing analysis, FEA, and CAD assemblies will …


Multiscale Modeling Of Carbon Fibers/Graphene Nanoplatelets/Epoxy Hybrid Composites For Aerospace Applications, Hashim Al Mahmud Jan 2020

Multiscale Modeling Of Carbon Fibers/Graphene Nanoplatelets/Epoxy Hybrid Composites For Aerospace Applications, Hashim Al Mahmud

Dissertations, Master's Theses and Master's Reports

Significant research effort has been dedicated for decades to improve the mechanical properties of aerospace polymer-based composite materials. Lightweight epoxy-based composite materials have increasingly replaced the comparatively heavy and expensive metal alloys used in aeronautical and aerospace structural components. In particular, carbon fibers (CF)/graphene nanoplatelets (GNP)/epoxy hybrid composites can be used for this purpose owing to their high specific stiffness and strength. Therefore, this work has been completed to design, predict, and optimize the effective mechanical properties of CF/GNP/epoxy composite materials at different length scales using a multiscale modeling approach. The work-flow of modeling involves a first step of using …


Peridynamic Approaches For Damage Prediction In Carbon Fiber And Carbon Nanotube Yarn Reinforced Polymer Composites, Forrest E. Baber Jan 2020

Peridynamic Approaches For Damage Prediction In Carbon Fiber And Carbon Nanotube Yarn Reinforced Polymer Composites, Forrest E. Baber

Theses and Dissertations

Aerospace structures are increasingly utilizing advanced composites because of their high specific modulus and specific strength. While the introduction of these material systems can dramatically decrease weight, they pose unique certification challenges, often requiring extensive experimental testing in each stage of the design cycle. The expensive and time-consuming nature of experimental testing necessitates the advancement of simulation methodologies to both aid in the certification process and assist in the exploration of the microstructure design space.

Peridynamic (PD) theory, originating from Sandia National Lab’s in the early 2000’s, is a nonlocal continuum-based method that reformulates the equation of motion into an …


Investigation Of Fundamental Principles Of Rigid Body Impact Mechanics, Khalid Alluhydan Jul 2019

Investigation Of Fundamental Principles Of Rigid Body Impact Mechanics, Khalid Alluhydan

Mechanical Engineering Research Theses and Dissertations

In impact mechanics, the collision between two or more bodies is a common, yet a very challenging problem. Producing analytical solutions that can predict the post-collision motion of the colliding bodies require consistent modeling of the dynamics of the colliding bodies. This dissertation presents a new method for solving the two and multibody impact problems that can be used to predict the post-collision motion of the colliding bodies. Also, we solve the rigid body collision problem of planar kinematic chains with multiple contacts with external surfaces.

In the first part of this dissertation, we study planar collisions of Balls and …


Reducing The Noise Impact Of Unmanned Aerial Vehicles By Flight Control System Augmentation, Matthew B. Galles Jul 2019

Reducing The Noise Impact Of Unmanned Aerial Vehicles By Flight Control System Augmentation, Matthew B. Galles

Mechanical & Aerospace Engineering Theses & Dissertations

The aim of this thesis is to explore methods to reduce the noise impact of unmanned aerial vehicles operating within acoustically sensitive environments by flight control system augmentation. Two methods are investigated and include: (i) reduction of sound generated by vehicle speed control while flying along a nominal path and (ii) reduction of acoustic exposure by vehicle path control while flying at a nominal speed. Both methods require incorporation of an acoustic model into the flight control system as an additional control objective and an acoustic metric to characterize primary noise sources dependent on vehicle state. An acoustic model was …


Structural Health Monitoring Of Composite Parts: A Review, Jacob Pessin Jun 2019

Structural Health Monitoring Of Composite Parts: A Review, Jacob Pessin

Honors Theses

Structural health monitoring has the potential to allow composite structures to be more reliable and safer, then by using more traditional damage assessment techniques. Structural health monitoring (SHM) utilizes individual sensor units that are placed throughout the load bearing sections of a structure and gather data that is used for stress analysis and damage detection. Statistical time based algorithms are used to analyze collected data and determine both damage size and probable location from within the structure. While traditional calculations and life span analysis can be done for structures made of isotropic materials such as steel or other metals, composites …


A Constructal Approach To The Design Of Inflected Airplane Wings, Shanae Powell Mar 2019

A Constructal Approach To The Design Of Inflected Airplane Wings, Shanae Powell

FIU Electronic Theses and Dissertations

Aeroelastic instabilities such as flutter can be accurately captured by state-of-the-art aeroelastic analysis methods and tools. However, these tools and methods fall short in exposing the reasons behind the occurrence of such instabilities. In this research, the constructal law is used to discover the main cause of the variation in the flutter speed and stress distribution for inflected aircraft wings when compared to its uninflected counterpart. This law considers the design as a physics phenomenon and uses an evolutionary flow principle to explain and predict the occurrence of energy flow configurations (i.e. the flow of stresses throughout the structure).

For …


Landing-Gear Impact Response: A Non-Linear Finite Element Approach, Tuan H. Tran Jan 2019

Landing-Gear Impact Response: A Non-Linear Finite Element Approach, Tuan H. Tran

UNF Graduate Theses and Dissertations

The primary objective of this research is to formulate a methodology of assessing the maximum impact loading condition that will incur onto an aircraft’s landing gear system via Finite Element Analysis (FEA) and appropriately determining its corresponding structural and impact responses to minimize potential design failures during hard landing (abnormal impact) and shock absorption testing. Both static and dynamic loading condition were closely analyzed, compared, and derived through the Federal Aviation Administration’s (FAA) airworthiness regulations and empirical testing data.

In this research, a nonlinear transient dynamic analysis is developed and established via NASTRAN advanced nonlinear finite element model (FEM) to …


Comparison Of Flow Field In The Proximity Of A Single Planar & Wrap-Around Fin, Nayhel Sharma, Palak Saini, Hrishabh Chaudhary, Gurteg Nagi, Rakesh Kumar Dr. Jan 2019

Comparison Of Flow Field In The Proximity Of A Single Planar & Wrap-Around Fin, Nayhel Sharma, Palak Saini, Hrishabh Chaudhary, Gurteg Nagi, Rakesh Kumar Dr.

International Journal of Aviation, Aeronautics, and Aerospace

Abstract

This paper analyses the results of the computational analysis between a single planar and a wrap-around fin mounted on a semi-cylindrical body. A free-stream Computational Fluid Dynamics (CFD) model was simulated for both cases in the Mach 0.4-3.0M range at 0°Angle of attack, in which, the behavior of flow around the fin was investigated using a turbulence model of higher order discretization. The post-processing shows all the possible views of the flow dynamics around the fins, as well as the missile body. The aerodynamic drag and the rolling moment characteristics of the planar and the wrap-around fin have been …


Enhanced Surface Integrity With Thermally Stable Residual Stress Fields And Nanostructures In Cryogenic Processing Of Titanium Alloy Ti-6al-4v, James R. Caudill Jan 2019

Enhanced Surface Integrity With Thermally Stable Residual Stress Fields And Nanostructures In Cryogenic Processing Of Titanium Alloy Ti-6al-4v, James R. Caudill

Theses and Dissertations--Mechanical Engineering

Burnishing is a chipless finishing process used to improve surface integrity by severe plastic deformation (SPD) of surface asperities. As surface integrity in large measure defines the functional performance and fatigue life of aerospace alloys, burnishing is thus a means of increasing the fatigue life of critical components, such as turbine and compressor blades in gas turbine engines. Therefore, the primary objective of this dissertation is to characterize the burnishing-induced surface integrity of Ti-6Al-4V alloy in terms of the implemented processing parameters. As the impact of cooling mechanisms on surface integrity from SPD processing is largely unexplored, a particular emphasis …