Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Discipline
Institution
Keyword
Publication Year
Publication
Publication Type
File Type

Articles 781 - 810 of 27053

Full-Text Articles in Mechanical Engineering

An Autonomous Aerial Drone System For Water Fluorescence Mapping And Targeted Sampling, Kazi Ragib Ishraq Sanim Apr 2023

An Autonomous Aerial Drone System For Water Fluorescence Mapping And Targeted Sampling, Kazi Ragib Ishraq Sanim

Theses and Dissertations

At present, aerial drones, also known as Uncrewed Aircraft Systems (UAS) or Unmanned Aerial Vehicles (UAV), are increasingly used in time and effort-heavy scientific exploration applications. One such application is inspecting the physical, chemical, and biological state of water bodies. This thesis presents a novel autonomous system capable of sensing water properties and collecting up to three 250 mL water samples from multiple sampling locations. The system features a customized aerial drone with an in-house built fluorescence sensor and pumping mechanism. It can also map the gradient of fluorescent content across the body of water to determine the best sampling …


Development Of System Pressure Drop Calculation Methods For Dilute Phase Pneumatic Conveying, Ross Daniel Gorman Apr 2023

Development Of System Pressure Drop Calculation Methods For Dilute Phase Pneumatic Conveying, Ross Daniel Gorman

Theses and Dissertations

This work is focused on dilute and dense phase pneumatic conveying of bulk solids. The motivation of this work is to use industrial data to scale up existing models for pressure drop in pneumatic conveying systems, determine which models best predict pressure drop in full conveying systems, and find the empirical coefficients that go with these models.

Several major research objectives were accomplished by this work. First, system pressure drop methods were evaluated in this research. Other researchers have focused on single pipe section type pressure drops. Second, the data used in this research both for the machine learning evaluations …


Multidimensional Transport-Coupled Numerical Investigation Of Non-Premixed Low-Temperature Flame In Atmospheric And High-Pressure Systems, Sudipta Saha Apr 2023

Multidimensional Transport-Coupled Numerical Investigation Of Non-Premixed Low-Temperature Flame In Atmospheric And High-Pressure Systems, Sudipta Saha

Theses and Dissertations

Gas-phase chemical reactions coupled with multidimensional fluid flow and heat and mass transport are found in various applications, i.e., from conventional engine applications to novel combustion techniques. With the goal of understanding such complex coupling in reacting flow systems, this dissertation work focuses on developing multi-physics simulation frameworks to investigate the effect of multidimensional transport on flame dynamics. This study primarily focuses on the modeling and simulation of low temperature flame formation in i) a canonical experimental setting with counterflow burners and ii) a supercritical water medium (i.e., hydrothermal flame).

In the first part of the dissertation, simulations of the …


Large Eddy Simulation For Empirical Modeling Of The Wake Of Three Urban Air Mobility Vehicles, Denis-Gabriel Caprace, Andrew Ning Apr 2023

Large Eddy Simulation For Empirical Modeling Of The Wake Of Three Urban Air Mobility Vehicles, Denis-Gabriel Caprace, Andrew Ning

Faculty Publications

Recent advances in urban air mobility have driven the development of many new VTOL concepts. These vehicles often feature original designs departing from the conventional helicopter configuration. Due to their novelty, the characteristics of the super-vortices forming in the wake of such aircraft are unknown. However, these vortices may endanger any other vehicle evolving in their close proximity, owing to potentially large induced velocities. Therefore, improved knowledge about the wakes of VTOL vehicles is needed to guarantee safe urban air mobility operations. In this work, we study the wake of three VTOL aircraft in cruise by means of large eddy …


Effects Of Various Dietary Carbohydrate Sources On The Growth Performance And Body Composition Of The Dog Conch, Laevistrombus Canarium, Jen-Hong Chu Mar 2023

Effects Of Various Dietary Carbohydrate Sources On The Growth Performance And Body Composition Of The Dog Conch, Laevistrombus Canarium, Jen-Hong Chu

Journal of Marine Science and Technology

This study investigates the effects of dietary supplementation with various carbohydrate sources on the growth and dietary nutrient utilization efficiency of a 0.72-g dog conch, Laevistrombus canarium. Five treatment diets had supplementation with alpha-starch (Sta), dextrin (Dex), pullulan gum (Pg), xanthan gum (Xg), and carboxymethyl cellulose (CMC). At the end of the feeding trial, the best growth performance (weight gain, 442.23%) and diet efficiency (protein efficiency ratio, 1.25, and feed conversion ratio [FCR], 2.04) were exhibited by the dog conch fed the Sta diet, whereas the lowest growth performance was observed in the dog conch fed the Xg and CMC …


Cost Advantages Of Far East/Europe Trunk Route Deployment With Port Selection In East Asia, Tai Hui-Huang, Chang Chin-Wei Mar 2023

Cost Advantages Of Far East/Europe Trunk Route Deployment With Port Selection In East Asia, Tai Hui-Huang, Chang Chin-Wei

Journal of Marine Science and Technology

To cater to the gradually increasing sizes of ships, several traditional container ports in East Asia built deep-water wharves to attract shipping carriers to berth, a decision that is considered highly reasonable because it allows for shipping carriers to gain a cost advantage. For traditional Far East/Europe (F/E) trunk routes, shipping carriers must deploy vessels that are large enough at hub ports to maintain low transshipment costs. However, for a port to attract shipping carriers, it should be able to first meet the cargo demand of these carriers. The port would also need to improve the loading ratio to enjoy …


Influence Of Vacuum Condition On Rapid Chloride Migration (Rcm) Test For Chloride Penetration Resistance Of Concrete, Chih-Yen Lin, Chun-Fu Chang, Chung-Chia Yang Mar 2023

Influence Of Vacuum Condition On Rapid Chloride Migration (Rcm) Test For Chloride Penetration Resistance Of Concrete, Chih-Yen Lin, Chun-Fu Chang, Chung-Chia Yang

Journal of Marine Science and Technology

NT Build 492 regulates that the pressure be set at 7.5–37.5 torr and be maintained for 3 h for vacuum processing. This large range of acceptable vacuum pressure is awkward for research, and 3 h of pump-down time may be excessive. In this study, vacuum conditions were divided into vacuum pressure and pump-down time groups: various vacuum pressures and pump-down times were used to preprocess specimens to explore the effect of vacuum conditions on the RCM test. The salt ponding test was also conducted to identify the optimal vacuum conditions. It is shown that the relationship between vacuum pressure and …


Exhaust Noise Elimination Using Silencers Fortified With Perforated Tubes, Extended Tubes, Penetrable Resin Inlet And Orifice Plate, Min-Chie Chiu, Ho-Chih Cheng Mar 2023

Exhaust Noise Elimination Using Silencers Fortified With Perforated Tubes, Extended Tubes, Penetrable Resin Inlet And Orifice Plate, Min-Chie Chiu, Ho-Chih Cheng

Journal of Marine Science and Technology

Pneumatic equipment in marine diesel engine and associated piping system often emit extremely high level of noises when releasing pressure. Concerning the crew’s hearing health, discovering an efficient noise silencing device becomes essential. A silencer fortified with extended tubes, perforated tubes, orifice plate, and penetrable resin inlet is presented in order to competently dampen the blown-up noises. A simplified objective function by means of FEM, Artificial Neural Networks (ANNs), and a Genetic Algorithm (GA) is established to enable the numerical calculation when using a finite element method. Three silencer designs, silencer A (with element A, a penetrable resin inlet), B …


Deep Learning–Based, Oceantdlx Sea Ice Detection Model For Sar Image, Liu Lin, Li Wanwu, Li Hang, Sun Yi Mar 2023

Deep Learning–Based, Oceantdlx Sea Ice Detection Model For Sar Image, Liu Lin, Li Wanwu, Li Hang, Sun Yi

Journal of Marine Science and Technology

This study constructs four deep-learning OceanTDLx series models and uses a WinR-AdaGrad gradient descent algorithm to train and optimize the constructed models. Through an analysis of the loss, accuracy, and time consumption of the four models (i.e., OceanTDL2, OceanTDL3, OceanTDL5 and OceanTDL8), we reveal that the models’ performance does not improve when the number of layers is increased and that OceanTDL5 provides the optimal performance. OceanTDL5 is compared with OceanTDA9 (a model that we previously constructed), and the curves for training loss_batch and training accuracy_batch indicate that OceanTDL5 is more suitable than OceanTDA9 for detecting distributed targets, particularly semi-melted sea …


Application Of Unmanned Aerial Vehicle–Based Infrared Images In Determining Characteristics Of Sea Surface Temperature Distribution, Hsing-Yu Wang, Hui-Ming Fang, Yun-Chih Chiang Mar 2023

Application Of Unmanned Aerial Vehicle–Based Infrared Images In Determining Characteristics Of Sea Surface Temperature Distribution, Hsing-Yu Wang, Hui-Ming Fang, Yun-Chih Chiang

Journal of Marine Science and Technology

This study investigated the temperature field of a body of water by using rotary-wing unmanned aerial vehicles (DJI Mavic 2 Enterprise Dual) comprising visible light and infrared cameras to determine sea temperature distribution. With a flight height of 150 m, image overlap of 80%, and image resolution of 4.75 cm/pixel, the proposed method was more effective than the conventional portable conductivity–temperature–depth device in rapidly measuring sea surface temperature and determining sea temperature distribution. The discharged heated water of the Hoping Power Plant traveled 100–330 m from the wastewater outfall and then gradually diffused in the range of 100–490 m before …


Combustion Of Scrap Waste Tires Of A Cogeneration Plant, Chin-Ko Yeh, Rong-Hua Yeh Mar 2023

Combustion Of Scrap Waste Tires Of A Cogeneration Plant, Chin-Ko Yeh, Rong-Hua Yeh

Journal of Marine Science and Technology

Various fuels can be used in circulating fluidized bed (CFB) boilers. In this study, the thermal and economic performance was investigated for three CFB fuels—heavy fuel oil, coal, and waste tire scraps—used in a cogeneration plant. The plant comprised a CFB boiler, a single-cylinder steam-extraction turbine, and a generator. Tire scrap combustion generated the most power per ton during peak hours: approximately 27.5% more than that generated using heavy oil and 42.3% more than when coal was employed; it also resulted in higher boiler efficiency during peak operation than coal (1.2% higher) or heavy oil (12.6% higher). The net plant …


Cable Decoupling And Cable-Based Stiffening Of Continuum Robots, Parsa Molaei Mar 2023

Cable Decoupling And Cable-Based Stiffening Of Continuum Robots, Parsa Molaei

LSU Master's Theses

Cable-driven continuum robots, which are robots with a continuously flexible backbone and no identifiable joints that are actuated by cables, have shown great potential for many applications in unstructured, uncertain environments. However, the standard design for a cable-driven continuum robot segment, which bends a continuous backbone along a circular arc, has many compliant modes of deformation which are uncontrolled, and which may result in buckling or other undesirable behaviors if not ameliorated. In this study, a detailed approach for using additional cables to selectively stiffen planar cable-driven robots without substantial coupling to the actuating cables is investigated. A mechanics-based model …


Housing In Kibera's Soweto East Informal Settlement, Kenya: A Socio-Technical Evaluation, Tiernan Brennan Mar 2023

Housing In Kibera's Soweto East Informal Settlement, Kenya: A Socio-Technical Evaluation, Tiernan Brennan

Masters

In 2003, the Kenya Slum Upgrading Programme (KENSUP) was launched in partnership with UN-Habitat and the Government of Kenya (GoK) to improve the livelihoods of people in Kenya by 2020 through the provision of improved shelter, infrastructure, land tenure and income generation. Kibera is an informal settlement in Kenya where varying housing typologies and traditional vernacular-style designs coexist with modern housing units. Soweto East was one of eighteen villages located in Kibera selected for KENSUP’s first major housing development initiative. Soweto East was selected from a screening of several housing projects that could be subjected to a socio-technical (STE). The …


Evolution Of Eddy Viscosity In The Wake Of A Wind Turbine, Luis Martínez-Tossas, Juliaan Bossuyt, Nicholas Hamilton, Raul Bayoan Cal Mar 2023

Evolution Of Eddy Viscosity In The Wake Of A Wind Turbine, Luis Martínez-Tossas, Juliaan Bossuyt, Nicholas Hamilton, Raul Bayoan Cal

Mechanical and Materials Engineering Faculty Publications and Presentations

The eddy viscosity hypothesis is a popular method in wind turbine wake modeling for estimating turbulent Reynolds stresses. We document the downstream evolution of eddy viscosity in the wake of a wind turbine from experimental and large-eddy-simulation data.Wake eddy viscosity is isolated from its surroundings by subtracting the inflow profile, and the driving forces are identified in each wake region. Eddy viscosity varies in response to changes in turbine geometry and nacelle misalignment with larger turbines generating stronger velocity gradients and shear stresses. We propose a model for eddy viscosity based on a Rayleigh distribution. Model parameters are obtained from …


Effect Of The Dynamic Froude–Krylov Force On Energy Extraction From A Point Absorber Wave Energy Converter With An Hourglass-Shaped Buoy, Houssein Yassin, Tania Demonte Gonzalez, Gordon Parker, David Wilson Mar 2023

Effect Of The Dynamic Froude–Krylov Force On Energy Extraction From A Point Absorber Wave Energy Converter With An Hourglass-Shaped Buoy, Houssein Yassin, Tania Demonte Gonzalez, Gordon Parker, David Wilson

Michigan Tech Publications

Point absorber wave energy converter (WEC) control strategies often require accurate models for maximum energy extraction. While linear models are suitable for small motions, the focus is on the nonlinear model of an hour-glass shaped buoy undergoing large vertical displacements. Closed-form expressions for the static and dynamic Froude–Krylov forces are developed. It is shown that, in general, the dynamic and static forces are of similar magnitude, which is not the case for a spherical buoy. While the dynamic force reduces the amplitude of the net buoy force, its shape predicts a larger buoy response than if neglected, causing the nonlinear …


Graphene Twistronics: Tuning The Absorption Spectrum And Achieving Metamaterial Properties, Ammar Armghan, Meshari Alsharari, Khaled Aliqab, Osamah Alsalman, Juveriya Parmar, Shobhit K. Patel Mar 2023

Graphene Twistronics: Tuning The Absorption Spectrum And Achieving Metamaterial Properties, Ammar Armghan, Meshari Alsharari, Khaled Aliqab, Osamah Alsalman, Juveriya Parmar, Shobhit K. Patel

Department of Mechanical and Materials Engineering: Faculty Publications

Graphene twistronics using multilayer graphene is presented in such a way that it provides a metamaterial effect. This manuscript also analyzes the prediction of behavior using machine learning. The metamaterial effect is achieved by twisting the graphene layers. Graphene twistronics is a new concept for changing the electrical and optical properties of bilayer graphene by applying a small angle twist between the layers. The angle twists of 5o, 10o, and 15o are analyzed for the proposed graphene twistronics design. Tuning in the absorption spectrum is achieved by applying small twists to the angles of the …


Heterogeneous Sensor Data Fusion For Multiscale, Shape Agnostic Flaw Detection In Laser Powder Bed Fusion Additive Manufacturing, Benjamin Bevans, Christopher Barrett, Thomas Spears, Aniruddha Gaikwad, Alex Riensche, Harold (Scott) Halliday, Prahalada Rao Mar 2023

Heterogeneous Sensor Data Fusion For Multiscale, Shape Agnostic Flaw Detection In Laser Powder Bed Fusion Additive Manufacturing, Benjamin Bevans, Christopher Barrett, Thomas Spears, Aniruddha Gaikwad, Alex Riensche, Harold (Scott) Halliday, Prahalada Rao

Department of Mechanical and Materials Engineering: Faculty Publications

We developed and applied a novel approach for shape agnostic detection of multiscale flaws in laser powder bed fusion (LPBF) additive manufacturing using heterogenous in-situ sensor data. Flaws in LPBF range from porosity at the micro-scale (< 100 μm), layer related inconsistencies at the meso-scale (100 μm to 1 mm) and geometry-related flaws at the macroscale (> 1 mm). Existing data-driven models are primarily focused on detecting a specific type of LPBF flaw using signals from one type of sensor. Such approaches, which are trained on data from simple cuboid and cylindrical-shaped coupons, have met limited success when used for detecting multiscale flaws in complex LPBF parts. The objective of this work is to develop a heterogenous sensor data fusion …


Pcl And Dmso2 Composites For Bio-Scaffold Materials, Jae-Won Jang, Kyung-Eun Min, Cheolhee Kim, Chien Wern, Sung Yi Mar 2023

Pcl And Dmso2 Composites For Bio-Scaffold Materials, Jae-Won Jang, Kyung-Eun Min, Cheolhee Kim, Chien Wern, Sung Yi

Mechanical and Materials Engineering Faculty Publications and Presentations

Polycaprolactone (PCL) has been one of the most popular biomaterials in tissue engineering due to its relatively low melting temperature, excellent thermal stability, and cost-effectiveness. However, its low cell attraction, low elastic modulus, and long-term degradation time have limited its application in a wide range of scaffold studies. Dimethyl sulfone (DMSO2) is a stable and non-hazardous organosulfur compound with low viscosity and high surface tension. PCL and DMSO2 composites may overcome the limitations of PCL as a biomaterial and tailor the properties of biocomposites. In this study, PCL and DMSO2 composites were investigated as a new bio-scaffold material to increase …


Microscale Modelling Of Lightning Damage In Fibre-Reinforced Composites, Scott L. J. Millen, Juhyeong Lee Mar 2023

Microscale Modelling Of Lightning Damage In Fibre-Reinforced Composites, Scott L. J. Millen, Juhyeong Lee

Mechanical and Aerospace Engineering Faculty Publications

In this work, three-dimensional (3D) finite element simulations were undertaken to study the effects of lightning strikes on the microscale behaviour of continuous fibre-reinforced composite materials and to predict and understand complex lightning damage mechanisms. This approach is different from the conventional mesoscale or macroscale level of analysis, that predicts the overall lightning damage in composite laminates, thus providing better understanding of lightning-induced thermo-mechanical damage at a fundamental level. Micromechanical representative volume element (RVE) models of a UD composite laminate were created with circular carbon fibres randomly distributed in an epoxy matrix. The effects of various grounding conditions (one-, two-, …


Advanced Ensemble Modeling Method For Space Object State Prediction Accounting For Uncertainty In Atmospheric Density, Smriti Nandan Paul, Richard J. Licata, Piyush M. Mehta Mar 2023

Advanced Ensemble Modeling Method For Space Object State Prediction Accounting For Uncertainty In Atmospheric Density, Smriti Nandan Paul, Richard J. Licata, Piyush M. Mehta

Mechanical and Aerospace Engineering Faculty Research & Creative Works

For objects in the low Earth orbit region, uncertainty in atmospheric density estimation is an important source of orbit prediction error, which is critical for space traffic management activities such as the satellite conjunction analysis. This paper investigates the evolution of orbit error distribution in the presence of atmospheric density uncertainties, which are modeled using probabilistic machine learning techniques. The recently proposed "HASDM-ML," "CHAMP-ML," and "MSIS-UQ" machine learning models for density estimation (Licata and Mehta, 2022b; Licata et al., 2022b) are used in this work. The investigation is convoluted because of the spatial and temporal correlation of the atmospheric density …


Large Deflection Analysis Of General Beams In Contact-Aided Compliant Mechanisms Using Chained Pseudo-Rigid-Body Model, Mohui Jin, Collin Ynchausti, Xianmin Zhang, Zhou Yang, Benliang Zhu, Larry L. Howell Mar 2023

Large Deflection Analysis Of General Beams In Contact-Aided Compliant Mechanisms Using Chained Pseudo-Rigid-Body Model, Mohui Jin, Collin Ynchausti, Xianmin Zhang, Zhou Yang, Benliang Zhu, Larry L. Howell

Faculty Publications

The nonlinear analysis and design of contact-aided compliant mechanisms (CCMs) are challenging. This paper presents a nonlinear method for analyzing the deformation of general beams that contact rigid surfaces in CCMs. The large deflection of the general beam is modeled by using the chained pseudo-rigid-body model. A geometry constraint from the contact surface is developed to constrain the beam’s deformed configuration. The contact analysis problem is formulated based on the principle of minimum potential energy and solved using an optimization algorithm. Besides, a novel technique based on the principle of work and energy is proposed calculate the reaction force/moment of …


A Model For Multi-Input Mechanical Advantage In Origami-Based Mechanisms, Jared Butler, Adam Shrager, Timothy Simpson, Landen Bowen, Mary Frecker, Robert Lang, Eric Wilcox, Paris Von Lockette, Larry L. Howell, Spencer P. Magleby Mar 2023

A Model For Multi-Input Mechanical Advantage In Origami-Based Mechanisms, Jared Butler, Adam Shrager, Timothy Simpson, Landen Bowen, Mary Frecker, Robert Lang, Eric Wilcox, Paris Von Lockette, Larry L. Howell, Spencer P. Magleby

Faculty Publications

Mechanical advantage is traditionally defined for single input and single-output rigid-body mechanisms. A generalized approach for identifying single-output mechanical advantage for a multiple-input compliant mechanism, such as many origami-based mechanisms, would prove useful in predicting complex mechanism behavior. While origami-based mechanisms are capable of offering unique solutions to engi neering problems, the design process of such mechanisms is complicated by the interaction of motion and forces. This paper presents a model of the mechanical advantage for multi input compliant mechanisms and explores how modifying the parameters of a model affects their behavior. The model is used to predict the force-deflection …


Finite Element Modeling Of Meniscal Tears Using Continuum Damage Mechanics And Digital Image Correlation, Derek Q. Nesbitt, Dylan E. Burruel, Bradley S. Henderson, Trevor J. Lujan Mar 2023

Finite Element Modeling Of Meniscal Tears Using Continuum Damage Mechanics And Digital Image Correlation, Derek Q. Nesbitt, Dylan E. Burruel, Bradley S. Henderson, Trevor J. Lujan

Mechanical and Biomedical Engineering Faculty Publications and Presentations

Meniscal tears are a common, painful, and debilitating knee injury with limited treatment options. Computational models that predict meniscal tears may help advance injury prevention and repair, but first these models must be validated using experimental data. Here we simulated meniscal tears with finite element analysis using continuum damage mechanics (CDM) in a transversely isotropic hyperelastic material. Finite element models were built to recreate the coupon geometry and loading conditions of forty uniaxial tensile experiments of human meniscus that were pulled to failure either parallel or perpendicular to the preferred fiber orientation. Two damage criteria were evaluated for all experiments: …


Surface Roughness Prediction In End Milling Processes Considering The Vibration Of The Cutting Tool, Yubin Lee Mar 2023

Surface Roughness Prediction In End Milling Processes Considering The Vibration Of The Cutting Tool, Yubin Lee

Dissertations and Theses

Purpose: Machining is a manufacturing process for making the desired design with dimensional tolerance and surface roughness. Despite the development of engineering technology, predicting machined surface roughness is still challenging since there are various factors, such as material properties, tool material properties, the rigidity of the machine tool, and the use of coolant. In particular, tool vibration is the most critical factor since it makes it challenging to obtain the desired quality of the machined product by unintentionally making a tool move. Therefore, surface finish was explored in this study, considering cutting tool vibration under various axial depth-of-cuts and feed …


Using Statistics, Computational Modelling And Artificial Intelligence Methods To Study And Strengthen The Link Between Kinematic Impacts And Mtbis, Andrew Luke Mcconnell Patterson Mar 2023

Using Statistics, Computational Modelling And Artificial Intelligence Methods To Study And Strengthen The Link Between Kinematic Impacts And Mtbis, Andrew Luke Mcconnell Patterson

Electronic Thesis and Dissertation Repository

Mild traumatic brain injuries (mTBIs) are frequently occurring, yet poorly understood, injuries in sports (e.g., ice hockey) and other physical recreation activities where head impacts occur. Helmets are essential pieces of equipment used to protect participants’ heads from mTBIs. Evaluating the performance of helmets to prevent mTBIs using simulations on anatomically accurate computational head finite element models is critically important for advancing the development of safer helmets. Advancing the level of detail in, and access to, such models, and their continued validation through state-of-the-art brain imaging methods and traditional head injury assessment procedures, is also essential to improve safety. The …


Fast-, Light-Cured Scintillating Plastic For 3d-Printing Applications, Brian G. Frandsen, Michael Febbraro, Thomas Ruland, Theodore W. Stephens, Paul A. Hausladen, Juan J. Manfredi, James E. Bevins Mar 2023

Fast-, Light-Cured Scintillating Plastic For 3d-Printing Applications, Brian G. Frandsen, Michael Febbraro, Thomas Ruland, Theodore W. Stephens, Paul A. Hausladen, Juan J. Manfredi, James E. Bevins

Faculty Publications

Additive manufacturing techniques enable a wide range of possibilities for novel radiation detectors spanning simple to highly complex geometries, multi-material composites, and metamaterials that are either impossible or cost prohibitive to produce using conventional methods. The present work identifies a set of promising formulations of photocurable scintillator resins capable of neutron-gamma pulse shape discrimination (PSD) to support the additive manufacturing of fast neutron detectors. The development of these resins utilizes a step-by-step, trial-and-error approach to identify different monomer and cross-linker combinations that meet the requirements for 3D printing followed by a 2-level factorial parameter study to optimize the radiation detection …


Developable Mechanisms On Right Conical Surfaces, Lance P. Hyatt, Spencer P. Magleby, Larry L. Howell Mar 2023

Developable Mechanisms On Right Conical Surfaces, Lance P. Hyatt, Spencer P. Magleby, Larry L. Howell

Faculty Publications

An approach for designing developable mechanisms on a conical surface is presented. By aligning the joint axes of spherical mechanisms to the ruling lines, the links can be created in a way that the mechanism conforms to a conical surface. Terminology is defined for mechanisms mapped onto a right cone. Models are developed to describe the motion of the mechanism with respect to the apex of the cone, and connections are made to cylindrical developable mechanisms using projected angles. The Loop Sum Method is presented as an approach to determine the geometry of the cone to which a given spherical …


A Design Approach To Fully Compliant Multistable Mechanisms Employing A Single Bistable Mechanism, Yanjie Gou, Guimin Chen, Larry L. Howell Mar 2023

A Design Approach To Fully Compliant Multistable Mechanisms Employing A Single Bistable Mechanism, Yanjie Gou, Guimin Chen, Larry L. Howell

Faculty Publications

A fully compliant multistable mechanism is a monolithic structure that is capable of staying at multiple positions without power input, and has many applications including switches, valves, positioners. However, it is difficult to design such a mechanism because of the complexities of the multistable behavior, the practical stress limits and the buckling constraints. This paper discusses the design approach for fully compliant multistable mechanisms which employs a single bistable mechanism and several end-effectors connected in series. The force-displacement characteristics of the end-effectors are derived using the pseudo-rigid-body model. The design approach to the fully compliant multistable mechanism is provided to …


On The Modeling Of A Contact-Aided Cross-Axis Flexural Pivot, Pietro Bilancia, Giovanni Berselli, Spencer P. Magleby, Larry L. Howell Mar 2023

On The Modeling Of A Contact-Aided Cross-Axis Flexural Pivot, Pietro Bilancia, Giovanni Berselli, Spencer P. Magleby, Larry L. Howell

Faculty Publications

This paper reports the study of a planar Cross-Axis Flexural Pivot (CAFP) comprising an additional contact pair. The proposed device turns useful for applications requiring a revolute joint that behaves differently when deflecting clockwise/anti-clockwise. The presence of the contact pair reduces the free length of one flexures, resulting in a considerable increment of the overall joint stiffness. The pivot behaviour is investigated, for different load cases, via the ChainedBeam-Constraint Model (CBCM), namely an accurate method to be applied in large deflection problems. A framework comprising Matlab and ANSYS is developed for testing the CAFP performances in terms of rotational stiffness, …


Kinetostatic And Dynamic Modeling Of Flexure-Based Compliant Mechanisms: A Survey, Mingxiang Ling, Larry L. Howell, Junyi Cao, Guimin Chen Mar 2023

Kinetostatic And Dynamic Modeling Of Flexure-Based Compliant Mechanisms: A Survey, Mingxiang Ling, Larry L. Howell, Junyi Cao, Guimin Chen

Faculty Publications

Flexure-based compliant mechanisms are becoming increasingly promising in precision engineering, robotics and other applications due to the excellent advantages of no friction, no backlash, no wear, and minimal requirement of assembly. Because compliant mechanisms have inherent coupling of kinematic- mechanical behaviors with large deflections and/or complex serial-parallel configurations, the kinetostatic and dynamic analyses are challenging in comparison to their rigid-body counterparts. To address these challenges, a variety of techniques have been reported in a growing stream of publications. This paper surveys and compares the conceptual ideas, key advances, applicable scopes and open problems of the state-of-the-art kinetostatic and dynamic modeling …