Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Mechanical Engineering

Investigation Of Control Parameters, Strategies, And Transport Modeling For Effective Electrokinetic Nanoparticle Treatment Of Cementitious Materials, Huayuan Zhong Nov 2021

Investigation Of Control Parameters, Strategies, And Transport Modeling For Effective Electrokinetic Nanoparticle Treatment Of Cementitious Materials, Huayuan Zhong

Doctoral Dissertations

Various deleterious chemical species (including sulfates, chlorides, and others) contaminate concrete structures which are inherently porous and thus suffer from compromised durability. Several technologies have been developed for repairing concrete or enhancing the service life. Nevertheless, their efficiency, practicability, and cost can vary widely. Compared with chemical grout, fiber wrap, and traditional repair technology, electrokinetic nanoparticle treatment (EN) has been found to provide remarkable benefits for strength restoration and mitigation of durability problems via porosity reduction. Nanoparticle instability and over dosage issues can arise and lead to problems during treatments. In many cases, these treatment processes have been accompanied by …


Digital Cutting Force Modeling For Milling Operations, Timothy T. No Aug 2021

Digital Cutting Force Modeling For Milling Operations, Timothy T. No

Doctoral Dissertations

Process improvement in milling through improved understanding of machining dynamics is an on-going research endeavor. The objective of this project is to advance digital modeling of the milling process by incorporating tool-specific geometry in the machining analysis. Structured light scanning will be used to perform tool geometry measurements and produce a 3D model. The 3D model data will include the spatial location of the cutting edges, as well as the rake and relief profiles from the tool cross section. The rake and relief profiles will be imported, together with the work material flow stress model, into a finite element analysis …


Vibration Behavior In Modulated Tool Path (Mtp) Turning, Ryan William Copenhaver Dec 2020

Vibration Behavior In Modulated Tool Path (Mtp) Turning, Ryan William Copenhaver

Doctoral Dissertations

This project studies the process dynamics and surface finish effects of modulated tool path (MTP) turning. In MTP turning, a small amplitude (typically less than 0.5 mm), low frequency oscillation (typically less than 10 Hz) is superimposed on the feed motion by the machine controller to intentionally segment the traditionally long, continuous chips. The basic science to be examined is the vibration behavior of this special case of interrupted cutting, which is not turning because the chip formation is intentionally discontinuous and is not milling because the time-dependent chip geometry is defined by the oscillatory feed motion, not the trochoidal …


Stability Analysis Of The Rotary Drill-String, Liangming Pan Dec 2014

Stability Analysis Of The Rotary Drill-String, Liangming Pan

Doctoral Dissertations

Oil and natural gas are major energy sources for modern society. A rotary drilling system is the best known technology to extract them from underground. The vibration and stability of drilling systems have been studied for decades to improve drilling efficiency and protect expensive down-hole components. It is well known that severe drill-string vibrations are caused by many different loads: axial loads such as the hook load and the self-weight of the drill-string, end torques applied by the surface motor and restrained at the bit, the inertial load caused by whirling, the fluid drag force, and the contact force between …