Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Rocket

Discipline
Institution
Publication Year
Publication
Publication Type

Articles 1 - 15 of 15

Full-Text Articles in Mechanical Engineering

Design Of Shape-Conforming Nosecone For Optimal Fluid Flow From Transonic To Supersonic Range, Anna Tombazzi Jan 2018

Design Of Shape-Conforming Nosecone For Optimal Fluid Flow From Transonic To Supersonic Range, Anna Tombazzi

Williams Honors College, Honors Research Projects

Modern flight vehicles, such as rockets, missiles, and airplanes, experience a force caused by forebody wave drag during the flight. This drag force is induced when the frontal point of each vehicle breaks the pressure wave during flight. Efforts to reduce this wave drag force to improve flight efficiency include modifying the nosecone profile of the flight vehicles to lower the drag force.

This project revolved around creating a design to make the transformation of nosecone shapes from a ¾ Parabolic profile to a ½ Power Series profile possible, mid-flight. Using a novel nosecone assembly, shape memory alloys (SMAs) and ...


Development And Integration Of The Janus Robotic Lander: A Liquid Oxygen - Liquid Methane Propulsion System Testbed, Raul Ponce Jan 2017

Development And Integration Of The Janus Robotic Lander: A Liquid Oxygen - Liquid Methane Propulsion System Testbed, Raul Ponce

Open Access Theses & Dissertations

Initiatives have emerged with the goal of sending humans to other places in our solar system. New technologies are being developed that will allow for more efficient space systems to transport future astronauts. One of those technologies is the implementation of propulsion systems that use liquid oxygen and liquid methane (LO2-LCH4) as propellants.

The benefits of a LO2-LCH4 propulsion system are plenty. One of the main advantages is the possibility of manufacturing the propellants at the destination body. A space vehicle which relies solely on liquid oxygen and liquid methane for its main propulsion and reaction control engines is necessary ...


Design Of A 2000 Lbf Lox/Lch4 Throttleable Rocket Engine For A Vertical Lander, Israel Lopez Jan 2017

Design Of A 2000 Lbf Lox/Lch4 Throttleable Rocket Engine For A Vertical Lander, Israel Lopez

Open Access Theses & Dissertations

Liquid oxygen (LOX) and liquid methane (LCH4) has been recognized as an attractive rocket propellant combination because of its in-situ resource utilization (ISRU) capabilities, namely in Mars. ISRU would allow launch vehicles to carry greater payloads and promote missions to Mars. This has led to an increasing interest to develop spacecraft technologies that employ this propellant combination.

The UTEP Center for Space Exploration and Technology Research (cSETR) has focused part of its research efforts to developing LOX/LCH4 systems. One of those projects includes the development of a vertical takeoff and landing vehicle called JANUS. This vehicle will employ a ...


Throttleable Gox/Abs Launch Assist Hybrid Rocket Motor For Small Scale Air Launch Platform, Zachary S. Spurrier May 2016

Throttleable Gox/Abs Launch Assist Hybrid Rocket Motor For Small Scale Air Launch Platform, Zachary S. Spurrier

All Graduate Theses and Dissertations

Aircraft-based space-launch platforms allow operational flexibility and offer the potential for significant propellant savings for small-to-medium orbital payloads. The NASA Armstrong Flight Research Center’s Towed Glider Air-Launch System (TGALS) is a small-scale flight research project investigating the feasibility for a remotely-piloted, towed, glider system to act as a versatile air launch platform for nano-scale satellites. Removing the crew from the launch vehicle means that the system does not have to be human rated, and offers a potential for considerable cost savings. Utah State University is developing a small throttled launch-assist system for the TGALS platform. This "stage zero" design ...


Design Of A 500 Lbf Liquid Oxygen And Liquid Methane Rocket Engine For Suborbital Flight, Jesus Eduardo Trillo Jan 2016

Design Of A 500 Lbf Liquid Oxygen And Liquid Methane Rocket Engine For Suborbital Flight, Jesus Eduardo Trillo

Open Access Theses & Dissertations

Liquid methane (LCH4)is the most promising rocket fuel for our journey to Mars and other space entities. Compared to liquid hydrogen, the most common cryogenic fuel used today, methane is denser and can be stored at a more manageable temperature; leading to more affordable tanks and a lighter system. The most important advantage is it can be produced from local sources using in-situ resource utilization (ISRU) technology. This will allow the production of the fuel needed to come back to earth on the surface of Mars, or the space entity being explored,making the overall mission more cost effective ...


Design Of The Structural And Propulsion Systems For The 2015 University Of Akron Rocket Team, Kyle W. Dehoff, Nicholas J. Hrusch Jan 2015

Design Of The Structural And Propulsion Systems For The 2015 University Of Akron Rocket Team, Kyle W. Dehoff, Nicholas J. Hrusch

Williams Honors College, Honors Research Projects

No abstract provided.


A Numerical Study Of High Temperature And High Velocity Gaseous Hydrogen Flow In A Cooling Channel Of A Ntr Core, Sajan B. Singh Dec 2013

A Numerical Study Of High Temperature And High Velocity Gaseous Hydrogen Flow In A Cooling Channel Of A Ntr Core, Sajan B. Singh

University of New Orleans Theses and Dissertations

Two mathematical models (a one and a three-dimensional) were adopted to study, numerically, the thermal hydrodynamic behavior of flow inside a single cooling channel of a Nuclear Thermal Rocket (NTR) engine. The first model assumes the flow in the cooling channel to be one-dimensional, unsteady, compressible, turbulent, and subsonic. The working fluid (GH2) is assumed to be compressible. The governing equations of the 1-D model are discretized using a second order accurate finite difference scheme. Also, a commercial CFD code is used to study the same problem. Numerical experiments, using both codes, simulated the flow and heat transfer in ...


Rocket Fuel Pressurization, Sean Green, Joe Marcinkowski, Andrew Nahab Jun 2013

Rocket Fuel Pressurization, Sean Green, Joe Marcinkowski, Andrew Nahab

Mechanical Engineering

No abstract provided.


Closed-Loop Thrust And Pressure Profile Throttling Of A Nitrous Oxide/Hydroxyl-Terminated Polybutadiene Hybrid Rocket Motor, Zachary W. Peterson Dec 2012

Closed-Loop Thrust And Pressure Profile Throttling Of A Nitrous Oxide/Hydroxyl-Terminated Polybutadiene Hybrid Rocket Motor, Zachary W. Peterson

All Graduate Theses and Dissertations

Hybrid motors that employ non-toxic, non-explosive components with a liquid oxidizer and a solid hydrocarbon fuel grain have inherently safe operating characteristics. The inherent safety of hybrid rocket motors offers the potential to greatly reduce overall operating costs. Another key advantage of hybrid rocket motors is the potential for in-flight shutdown, restart, and throttle by controlling the pressure drop between the oxidizer tank and the injector. This research designed, developed, and ground tested a closed-loop throttle controller for a hybrid rocket motor using nitrous oxide and hydroxyl-terminated polybutadiene as propellants. The research simultaneously developed closed-loop throttle algorithms and lab scale ...


Development Of Oxidizer Flow Control For Use In Hybrid Rocket Motors Of The Scientific Sounding Rocket Scale, Luke Saindon May 2012

Development Of Oxidizer Flow Control For Use In Hybrid Rocket Motors Of The Scientific Sounding Rocket Scale, Luke Saindon

Honors College

To successfully build a rocket engine with variable thrust you must devise a reliable and robust oxidizer flow control system. The goal of this thesis is to contribute to the goal of building a variable thrust (throttled) hybrid rocket engine, which could eventually be used to power scientific sounding rockets. A variable thrust hybrid engine would increase reusability, flexibility, and capability of almost any small rocket.

Specifically, this thesis work regards the development of the closed loop oxidizer flow control system. To do this, a small test rig was built in the lab that consists of all the components in ...


Rayleigh Test Apparatus Design Report, Josef Duller, Owen Raybould, James Nicovich Jun 2011

Rayleigh Test Apparatus Design Report, Josef Duller, Owen Raybould, James Nicovich

Mechanical Engineering

The Rayleigh Test Apparatus is a device that will be used to test the thermodynamic properties of Nitrous Oxide to assess the feasibility of using this fluid as a coolant for a hybrid rocket aero spike. The aero spike is intended to redirect the propulsion flow as it leaves the engine to create a more efficient flow pattern at low and high altitudes. However, there are issues of overheating which leads to melting of the aero spike. For this reason, the use of nitrous oxide (N2O) as a coolant is being explored. N20 is being considered because it is already ...


Effect Of Unsteady Combustion On The Stability Of Rocket Engines, Tina Morina Rice May 2011

Effect Of Unsteady Combustion On The Stability Of Rocket Engines, Tina Morina Rice

Doctoral Dissertations

Combustion instability is a problem that has plagued the development of rocket-propelled devices since their conception. It is characterized by the occurrence of high-frequency nonlinear gas oscillations inside the combustion chamber. This phenomenon degrades system performance and can result in damage to both structure and instrumentation.

The goal of this dissertation is to clarify the role of unsteady combustion in the combustor instability problem by providing the first quantified estimates of its effect upon the stability of liquid rocket engines. The combination of this research with a new system energy balance method, accounting for all dynamic interactions within a system ...


High-Level, Product Type-Specific Programmatic Operations For Streamlining Associative Computer-Aided Design, Nathan W. Scott Aug 2008

High-Level, Product Type-Specific Programmatic Operations For Streamlining Associative Computer-Aided Design, Nathan W. Scott

Theses and Dissertations

Research in the field of Computer Aided Design (CAD) has long focused on reducing the time and effort required of engineers to define three dimensional digital product models. Parametric, feature-based modeling with inter-part associativity allows complex assembly designs to be defined and re-defined while maintaining the vital part-to-part interface relationships. The top-down modeling method which uses assembly level control structures to drive child level geometry has proved valuable in maintaining these interfaces. Creating robust parametric models like these, however, is very time consuming especially since there can be hundreds of features and thousands of mathematical expressions to create. Even if ...


High Pressure Testing Of Composite Solid Rocket Propellant Mixtures: Burner Facility Characterization, Rodolphe Valentin Carro Jan 2007

High Pressure Testing Of Composite Solid Rocket Propellant Mixtures: Burner Facility Characterization, Rodolphe Valentin Carro

Electronic Theses and Dissertations

Much Research on composite solid propellants has been performed over the past few decades and much progress has been made, yet many of the fundamental processes are still unknown, and the development of new propellants remains highly empirical. Ways to enhance the performance of solid propellants for rocket and other applications continue to be explored experimentally, including the effects of various additives and the impact of fuel and oxidizer particle sizes on burning behavior. One established method to measure the burning rate of composite propellant mixtures in a controlled laboratory setting is to use a constant-volume pressure vessel, or strand ...


Design And Implementation Of An Emission Spectroscopy Diagnostic In A High-Pressure Strand Burner For The Study Of Solid Propell, Jason Arvanetes Jan 2006

Design And Implementation Of An Emission Spectroscopy Diagnostic In A High-Pressure Strand Burner For The Study Of Solid Propell, Jason Arvanetes

Electronic Theses and Dissertations

The application of emission spectroscopy to monitor combustion products of solid rocket propellant combustion can potentially yield valuable data about reactions occurring within the volatile environment of a strand burner. This information can be applied in the solid rocket propellant industry. The current study details the implementation of a compact spectrometer and fiber optic cable to investigate the visible emission generated from three variations of solid propellants. The grating was blazed for a wavelength range from 200 to 800 nm, and the spectrometer system provides time resolutions on the order of 1 millisecond. One propellant formula contained a fine aluminum ...