Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Mechanical Engineering

A Parametric Study Of Meso-Scale Patterns For Auxetic Mechanical Behavior Optimization, Matthew C. Schuler Jan 2016

A Parametric Study Of Meso-Scale Patterns For Auxetic Mechanical Behavior Optimization, Matthew C. Schuler

Honors Undergraduate Theses

This thesis focuses on the development, parameterization and optimization of a novel meso-scale pattern used to induce auxetic behavior, i.e., negative Poisson's ratio, at the bulk scale. Currently, the majority of auxetic structures are too porous to be utilized in conventional load-bearing applications. For others, manufacturing methods have yet to realize the meso-scale pattern. Consequently, new auxetic structures must be developed in order to confer superior thermo-mechanical responses to structures at high temperature. Additionally, patterns that take into account manufacturing limitations, while maintaining the properties characteristically attached to negative Poisson's Ratio materials, are ideal in order to utilize the potential …


Thermodynamic Analysis And Optimization Of Supercritical Carbon Dioxide Brayton Cycles, Mahmood Mohagheghi Jan 2015

Thermodynamic Analysis And Optimization Of Supercritical Carbon Dioxide Brayton Cycles, Mahmood Mohagheghi

Electronic Theses and Dissertations

The power generation industry is facing new challenging issues regarding accelerating growth of electricity demand, fuel cost and environmental pollution. These challenges accompanied by concerns of energy resources becoming scarce necessitate searching for sustainable and economically competitive solutions to supply the future electricity demand. To this end, supercritical carbon dioxide (S-CO2) Brayton cycles present great promise particularly in high temperature concentrated solar power (CSP) and waste heat recovery (WHR) applications. With this regard, this dissertation is intended to perform thorough thermodynamic analyses and optimization of S-CO2 Brayton cycles for both of these applications. A modeling tool has been developed, which …


A Hybrid Constitutive Model For Creep, Fatigue, And Creep-Fatigue Damage, Calvin Stewart Jan 2013

A Hybrid Constitutive Model For Creep, Fatigue, And Creep-Fatigue Damage, Calvin Stewart

Electronic Theses and Dissertations

In the combustion zone of industrial- and aero- gas turbines, thermomechanical fatigue (TMF) is the dominant damage mechanism. Thermomechanical fatigue is a coupling of independent creep, fatigue, and oxidation damage mechanisms that interact and accelerate microstructural degradation. A mixture of intergranular cracking due to creep, transgranular cracking due to fatigue, and surface embrittlement due to oxidation is often observed in gas turbine components removed from service. The current maintenance scheme for gas turbines is to remove components from service when any criteria (elongation, stress-rupture, crack length, etc.) exceed the designed maximum allowable. Experimental, theoretical, and numerical analyses are performed to …


Automated Hybrid Singularity Superposition And Anchored Grid Pattern Bem Algorithm For The Solution Of The Inverse Geometric Problem, Marcus Ni Jan 2013

Automated Hybrid Singularity Superposition And Anchored Grid Pattern Bem Algorithm For The Solution Of The Inverse Geometric Problem, Marcus Ni

Electronic Theses and Dissertations

A method for solving the inverse geometrical problem is presented by reconstructing the unknown subsurface cavity geometry using boundary element methods, a genetic algorithm, and Nelder-Mead non-linear simplex optimization. The heat conduction problem is solved utilizing the boundary element method, which calculates the difference between the measured temperature at the exposed surface and the computed temperature under the current update of the unknown subsurface flaws and cavities. In a first step, clusters of singularities are utilized to solve the inverse problem and to identify the location of the centroid(s) of the subsurface cavity(ies)/flaw(s). In a second step, the reconstruction of …


Design Optimization Of Solid Rocket Motor Grains For Internal Ballistic Performance, Roger Hainline Jan 2006

Design Optimization Of Solid Rocket Motor Grains For Internal Ballistic Performance, Roger Hainline

Electronic Theses and Dissertations

The work presented in this thesis deals with the application of optimization tools to the design of solid rocket motor grains per internal ballistic requirements. Research concentrated on the development of an optimization strategy capable of efficiently and consistently optimizing virtually an unlimited range of radial burning solid rocket motor grain geometries. Optimization tools were applied to the design process of solid rocket motor grains through an optimization framework developed to interface optimization tools with the solid rocket motor design system. This was done within a programming architecture common to the grain design system, AML. This commonality in conjunction with …