Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 20 of 20

Full-Text Articles in Mechanical Engineering

Adaptation Algorithm For Self-Tuning Of Parameters Of Models Of Multi-Stage Flotation Processes, Nilufar Sharifzhanova, Maksadhan Yakubov, Francesco Gregoretti Dec 2023

Adaptation Algorithm For Self-Tuning Of Parameters Of Models Of Multi-Stage Flotation Processes, Nilufar Sharifzhanova, Maksadhan Yakubov, Francesco Gregoretti

Technical science and innovation

Modern methods for solving problems of planning the execution of batches of tasks in multi-stage systems are characterized by the presence of restrictions on their dimensionality, the impossibility of guaranteed obtaining better results in comparison with fixed packages for different values of the input parameters of the problem. In the article, the author solved the problem of optimizing the composition of job packages running in multi-stage systems using the branch and bound method. Research has been carried out on various ways to form package execution orders tasks in multi-stage systems (heuristic rules for ordering packages tasks in the sequence of …


Enhancements To Nuclear Thermal Propulsion Rockets, Kimberly Gonzalez Aug 2022

Enhancements To Nuclear Thermal Propulsion Rockets, Kimberly Gonzalez

UNLV Theses, Dissertations, Professional Papers, and Capstones

Nuclear thermal rocket propulsion has been proposed as a highly efficient technology for space vehicles traveling from earth orbit to the moon, Mars, and other locations in the solar system. With twice the performance of a chemical rocket, nuclear thermal propulsion (NTP) uses the thrust produced by heating hydrogen gas within a thermal nuclear reactor where the exhaust is then passed through a de Laval nozzle to produce supersonic flow. NTP engines were the subject ofthe NERVA experiments at the Nevada Test Site in the 1970’s, and they produced a specific impulse of up to 900 seconds which is almost …


A Numerical Optimization Study Of A Novel Electrospray Emitter Design, Joshua H. Howell May 2022

A Numerical Optimization Study Of A Novel Electrospray Emitter Design, Joshua H. Howell

Masters Theses

The low thrust and high specific impulse of electric propulsion has been brought to the forefront for CubeSat and small spacecraft applications. Electrospray thrusters, which operate via electrostatic principles, have seen much research, development, and application in recent years. The small sizes of the spacecraft that utilize electrospray thrusters has focused development into the miniaturization of this technology to the micro-scale. Miniaturization introduces design challenges that must be addressed, including power supply mass and footprint requirements. This consequence requires investigation into the effects of design choices on the thruster onset voltage, defined as the voltage at which ion emission begins. …


Sonic Boom Loudness Reduction Through Localized Supersonic Aircraft Equivalent-Area Changes, Troy A. Abraham May 2021

Sonic Boom Loudness Reduction Through Localized Supersonic Aircraft Equivalent-Area Changes, Troy A. Abraham

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

The NASA University Leadership Initiative (ULI) titled “Adaptive Aerostructures for Revolutionary Civil Supersonic Transportation” looks to study the feasibility of distributed structural adaptivity on a supersonic aircraft for maintaining acceptable en-route sonic boom loudness during overland flight. The ULI includes a team of industry and university partners that are working together to develop and implement the systems necessary to accomplish this goal.

The Utah State University Aerolab is a member of this ULI team and has been tasked with developing and using low-fidelity supersonic aerodynamic and sonic boom predictions tools to rapidly study the effects of localized geometry changes on …


Electromagnetic Formation Control Using Frequency Multiplexing, Zahra Abbasi Jan 2021

Electromagnetic Formation Control Using Frequency Multiplexing, Zahra Abbasi

Theses and Dissertations--Mechanical Engineering

This dissertation addresses control of relative positions and orientations of formation flying satellites using magnetic interactions. Electromagnetic formation flight (EMFF) is implemented, in which each satellite is equipped with a set of electromagnetic coils to generate an electromagnetic field. Traditional EMFF technique applies DC magnetic fields which lead to a nonlinear and highly coupled formation dynamics that allow for only position or orientation control of the satellites. We present a new frequency multiplexing method, which is a technique that uses multi-frequency sinusoidal controls, to approximately decouple the formation dynamics and to provide enough controls for both position and orientation control. …


Considerations For The Design Optimization Of Floating Offshore Wind Turbine Blades, Evan M. Gaertner Dec 2020

Considerations For The Design Optimization Of Floating Offshore Wind Turbine Blades, Evan M. Gaertner

Doctoral Dissertations

Floating offshore wind turbines are an immature technology with relatively high costs and risk associated with deployment. Of the few floating wind turbine prototypes and demonstration projects deployed in real metocean conditions, all have used standard turbines design for onshore or offshore fixed bottom conditions. This neglects the unique unsteady aerodynamics brought on by floating support structure motion. While the floating platform has been designed and optimized for a given rotor, the global system is suboptimal due to the rotor operating in conditions outside of which it was design for. If the potential offered by floating wind turbines is to …


Numerical Method For Rapid Aerostructural Design And Optimization, Jeffrey D. Taylor, Douglas F. Hunsaker Jun 2020

Numerical Method For Rapid Aerostructural Design And Optimization, Jeffrey D. Taylor, Douglas F. Hunsaker

Mechanical and Aerospace Engineering Student Publications and Presentations

During early phases of wing design, analytic and low-fidelity methods are often used to identify promising design concepts. In many cases, solutions obtained using these methods provide intuition about the design space that is not easily obtained using higher-fidelity methods. This is especially true for aerostructural design. However, many analytic and low-fidelity aerostructural solutions are limited in application to wings with specific planforms and weight distributions. Here, a numerical method for minimizing induced drag with structural constraints is presented that uses approximations that apply to wings with arbitrary planforms and weight distributions. The method is applied to the NASA Ikhana …


A Reinforcement Learning Approach To Spacecraft Trajectory Optimization, Daniel S. Kolosa Dec 2019

A Reinforcement Learning Approach To Spacecraft Trajectory Optimization, Daniel S. Kolosa

Dissertations

This dissertation explores a novel method of solving low-thrust spacecraft targeting problems using reinforcement learning. A reinforcement learning algorithm based on Deep Deterministic Policy Gradients was developed to solve low-thrust trajectory optimization problems. The algorithm consists of two neural networks, an actor network and a critic network. The actor approximates a thrust magnitude given the current spacecraft state expressed as a set of orbital elements. The critic network evaluates the action taken by the actor based on the state and action taken. Three different types of trajectory problems were solved, a generalized orbit change maneuver, a semimajor axis change maneuver, …


Characterization And Optimization Of A Propeller Test Stand, Colin Bruce Leighton Benjamin Apr 2019

Characterization And Optimization Of A Propeller Test Stand, Colin Bruce Leighton Benjamin

Mechanical & Aerospace Engineering Theses & Dissertations

In recent history, there has been a rapid rise in the use of drones, and they are expanding in popularity each year. The widespread use and future capabilities of these unmanned aerial vehicles (UAVs) will call for increased study and classification of propellers to maximize their performance. As a result, it is necessary to have continuity in the development, maximization, and optimization of propeller test stand’s capability to collect accurate and precise measurements. It is of significant advantage to have the capability of accurately characterizing a propeller based on its thrust and torque. In this study, a propeller test stand …


A Monolithic Internal Strain-Gage Balance Design Based On Design For Manufacturability, Thomas Ladson Webb Iii Jan 2018

A Monolithic Internal Strain-Gage Balance Design Based On Design For Manufacturability, Thomas Ladson Webb Iii

Mechanical & Aerospace Engineering Theses & Dissertations

This paper proposes an alternative approach to internal strain-gage balance design driven by Design for Manufacturability (DFM) principles. The objective of this research was a reduction in fabrication time and, subsequently, cost of a balance by simplifying its design while maintaining basic stiffness and sensitivity. Traditionally, the National Aeronautics and Space Administration (NASA) Langley Research Center (LaRC) balance designs have relied on Electro-Discharge Machining (EDM), which is a precise but slow and, therefore, expensive process. EDM is chosen due to several factors, including material hardness, surface finish, and complex geometry, including blind cuts. The new balance design objectives require no …


Development Of An Analysis And Design Optimization Framework For Marine Propellers, Ashish C. Tamhane Apr 2017

Development Of An Analysis And Design Optimization Framework For Marine Propellers, Ashish C. Tamhane

Mechanical & Aerospace Engineering Theses & Dissertations

In this thesis, a framework for the analysis and design optimization of ship propellers is developed. This framework can be utilized as an efficient synthesis tool in order to determine the main geometric characteristics of the propeller but also to provide the designer with the capability to optimize the shape of the blade sections based on their specific criteria.

A hybrid lifting-line method with lifting-surface corrections to account for the three-dimensional flow effects has been developed. The prediction of the correction factors is achieved using Artificial Neural Networks and Support Vector Regression. This approach results in increased approximation accuracy compared …


Optimization Methodology For Cvt Ratio Scheduling With Consideration Of Both Engine And Cvt Efficiency, Steven Beuerle Dec 2016

Optimization Methodology For Cvt Ratio Scheduling With Consideration Of Both Engine And Cvt Efficiency, Steven Beuerle

Masters Theses

A transmission ratio schedule is developed to optimize the fuel consumption for an automotive continuously variable transmission (CVT) connected to an internal combustion engine (ICE). Although the optimal operating line (OOL) generated from an engine brake specific fuel consumption (BSFC) map can be used to generate a CVT ratio schedule that yields maximum engine efficiency, it was found that OOL-based CVT ratio scheduling does not necessarily offer the best fuel economy because optimal CVT efficiency does not always correspond to OOL tracking. To develop a CVT ratio schedule that can offer the best fuel economy, a novel ratio-scheduling methodology is …


A Genetic Algorithm Incorporating Design Choice For The Preliminary Design Of Unmanned Aerial Vehicles, Kenneth Michael Mull Dec 2016

A Genetic Algorithm Incorporating Design Choice For The Preliminary Design Of Unmanned Aerial Vehicles, Kenneth Michael Mull

Masters Theses

Unmanned Aerial Vehicles (UAVs) are currently at the forefront of aerospace technologies. The design of these aircraft is complex and often performance characteristics are coupled to multiple design attributes. At the early design phase both discrete and continuous design choices are present limiting the feasibility of traditional derivative based optimization techniques. In place of these methods, the design space can be explored using a genetic algorithm that mimics the process of natural selection, providing a capable and reliable base airframe constructed from the required performance metrics. By incorporating a genetic multidisciplinary optimization algorithm early in the conceptual design phase, aircraft …


Polynomial Chaos For The Computation Of Annual Energy Production In Wind Farm Layout Optimization, Santiago Padrón, Andrew P.J. Stanley, Jared Thomas, Juan Alonso, Andrew Ning Oct 2016

Polynomial Chaos For The Computation Of Annual Energy Production In Wind Farm Layout Optimization, Santiago Padrón, Andrew P.J. Stanley, Jared Thomas, Juan Alonso, Andrew Ning

Faculty Publications

Careful management of wake interference is essential to further improve Annual Energy Production (AEP) of wind farms. Wake effects can be minimized through optimization of turbine layout, wind farm control, and turbine design. Realistic wind farm optimization is challenging because it has numerous design degrees of freedom and must account for the stochastic nature of wind. In this paper we provide a framework for calculating AEP for any relevant uncertain (stochastic) variable of interest. We use Polynomial Chaos (PC) to efficiently quantify the effect of the stochastic variables—wind direction and wind speed—on the statistical outputs of interest (AEP) for wind …


Optimization Of A Low Reynold's Number 2-D Inflatable Airfoil Section, Todd A. Johansen Dec 2011

Optimization Of A Low Reynold's Number 2-D Inflatable Airfoil Section, Todd A. Johansen

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

A stand-alone genetic algorithm (GA) and an surrogate-based optimization (SBO) combined with a GA were compared for accuracy and performance. Comparisons took place using the Ackley Function and Rastrigin's Function, two functions with multiple local maxima and minima that could cause problems for more traditional optimization methods, such as a gradient-based method. The GA and SBO with GA were applied to the functions through a fortran interface and it was found that the SBO could use the same number of function evaluations as the GA and achieve at least 5 orders of magnitude greater accuracy through the use of surrogate …


A Study On Facility Planning Using Discrete Event Simulation: Case Study Of A Grain Delivery Terminal., Sarah M. Asio Jul 2011

A Study On Facility Planning Using Discrete Event Simulation: Case Study Of A Grain Delivery Terminal., Sarah M. Asio

Department of Industrial and Management Systems Engineering: Dissertations, Theses, and Student Research

The application of traditional approaches to the design of efficient facilities can be tedious and time consuming when uncertainty and a number of constraints exist. Queuing models and mathematical programming techniques are not able to capture the complex interaction between resources, the environment and space constraints for dynamic stochastic processes. In the following study discrete event simulation is applied to the facility planning process for a grain delivery terminal. The discrete event simulation approach has been applied to studies such as capacity planning and facility layout for a gasoline station and evaluating the resource requirements for a manufacturing facility. To …


Interim Access To The International Space Station, Tyson Karl Smith Dec 2009

Interim Access To The International Space Station, Tyson Karl Smith

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

This thesis evaluates mission scenarios using the existing Evolved Expendable Launch Vehicles for delivering the Crew Exploration Vehicle to the International Space Station. The Space Shuttle is scheduled to retire in the year 2011 and the Ares I is being developed to replace it. With its current schedule, the earliest that the Ares I will become fully operational is 2016. The configurations in this thesis are presented to narrow the gap in which the USA does not have direct access to the International Space Station. They also present "buy down" options for the USA human space operations, if the current …


An Optimal Dynamic Inversion Approach For Controlling A Class Of One-Dimensional Nonlinear Distributed Parameter Systems, Radhakant Padhi, S. N. Balakrishnan Jan 2006

An Optimal Dynamic Inversion Approach For Controlling A Class Of One-Dimensional Nonlinear Distributed Parameter Systems, Radhakant Padhi, S. N. Balakrishnan

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Combining the principles of dynamic inversion and optimization theory, a new approach is presented for stable control of a class of one-dimensional nonlinear distributed parameter systems, assuming the availability a continuous actuator in the spatial domain. Unlike the existing approximate-then-design and design-then-approximate techniques, here there is no need of any approximation either of the system dynamics or of the resulting controller. Rather, the control synthesis approach is fairly straight-forward and simple. The controller formulation has more elegance because we can prove the convergence of the controller to its steady state value. To demonstrate the potential of the proposed technique, a …


Optimization Of Torquer Coil Design For Use With The Small Satellite Attitude Control Simulator, David Deloyd Anderson May 1996

Optimization Of Torquer Coil Design For Use With The Small Satellite Attitude Control Simulator, David Deloyd Anderson

Undergraduate Honors Capstone Projects

This paper presents a procedure used to optimize the performance of a ferromagnetic core magnetic torquer coil design for use on the Space Dynamics Laboratory (Logan, UT) Small Satellite Attitude Control Simulator. The items of optimization include the primary goal of maximizing the coil 's magnetic moment while reducing power consumption and system mass within given power, mass, and dimensional constraints. The optimization process makes use of several simple equations to determine a few starting points for design, after which an iterative approach based on experimentation is used to produce the final design. It is found that optimal magnetic moment …


Shape Sensitivity Analysis And Optimization Of Skeletal Structures And Geometrically Nonlinear Solids, Ching-Hung Chuang Apr 1992

Shape Sensitivity Analysis And Optimization Of Skeletal Structures And Geometrically Nonlinear Solids, Ching-Hung Chuang

Mechanical & Aerospace Engineering Theses & Dissertations

Formulations and computational schemes for shape design sensitivity analysis and optimization have been developed for both skeletal structures and geometrically nonlinear elastic solids. The continuum approach, which is based on the weak variational form of the governing differential equation and the concept of the material derivative, plays a central role in such a development.

In the first part of this work, the eigenvalue and eigenvector sensitivity equations for skeletal structures are derived with respect to configuration variables of joint and support locations. This derivation is done by the domain method as well as the boundary method. The discrete approach for …