Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 9 of 9

Full-Text Articles in Mechanical Engineering

Wrinkling Of Membrane And Thin Film Under Torsion, Tingting Chen Jan 2019

Wrinkling Of Membrane And Thin Film Under Torsion, Tingting Chen

Dissertations and Theses

Membranes and thin film structures are widely used in modern technologies. Applications include solar sails and sunshields in space missions, biological membranes and flexible circuit boards. Wrinkling of membrane or a stiff film on a soft substrate may occur in either desired or unwanted patterns. This work tries to obtain some understanding on the wrinkling phenomenon and provide guidance in avoiding wrinkling or effectively controlling the wrinkle patterns.

Many works have been published about wrinkling in the thin sheets since the 20th century. However, there is no simple analytical way to systematically characterize the wrinkling in these studies. In …


Experiments And Multi-Field Modeling Of Inelastic Soft Materials, Shuolun Wang May 2018

Experiments And Multi-Field Modeling Of Inelastic Soft Materials, Shuolun Wang

Dissertations

Soft dielectrics are electrically-insulating elastomeric materials, which are capable of large deformation and electrical polarization, and are used as smart transducers for converting between mechanical and electrical energy. While much theoretical and computational modeling effort has gone into describing the ideal, time-independent behavior of these materials, viscoelasticity is a crucial component of the observed mechanical response and hence has a significant effect on electromechanical actuation. This thesis reports on a constitutive theory and numerical modeling capability for dielectric viscoelastomers, able to describe electromechanical coupling, large- deformations, large-stretch chain-locking, and a time-dependent mechanical response. This approach is calibrated to the widely-used …


Finite Element Simulation Of Pzt-Aided Interrogation Of Composite Laminates Exhibiting Damage, Amany Micheal, Yehia Bahei-El-Din Nov 2016

Finite Element Simulation Of Pzt-Aided Interrogation Of Composite Laminates Exhibiting Damage, Amany Micheal, Yehia Bahei-El-Din

Centre for Advanced Materials

Piezoelectricity has proved effective in capturing changes in structures caused by various damage mechanisms. In one approach, piezoelectric wafer active sensors (PWAS) are mounted on the surface of the host structure and utilized as both actuators and sensors to interrogate the structure and monitor its health. This is achieved by subjecting the PWAS to a transient electric pulse and reading the resulting voltage. Changes in the stiffness of the substrate due to structural damage affect the response of the PWAS, which could be correlated to integrity of the structure. Applying this technique to fibrous composite laminates encounters particular challenges due …


Numerical Modeling And Simulation Of Welding Residual Stresses Using Finite Element Method, Jing Zheng, Ayhan Ince Oct 2016

Numerical Modeling And Simulation Of Welding Residual Stresses Using Finite Element Method, Jing Zheng, Ayhan Ince

The 8th International Conference on Physical and Numerical Simulation of Materials Processing

No abstract provided.


Finite Element Simulation Of Wind Turbine Aerodynamics: Validation Study Using Nrel Phase Vi Experiment, Ming-Chen Hsu, Ido Akkerman, Yuri Bazilevs Mar 2013

Finite Element Simulation Of Wind Turbine Aerodynamics: Validation Study Using Nrel Phase Vi Experiment, Ming-Chen Hsu, Ido Akkerman, Yuri Bazilevs

Ming-Chen Hsu

A validation study using the National Renewable Energy Laboratory (NREL) Phase VI wind turbine is presented. The aerodynamics simulations are performed using the finite element arbitrary Lagrangian–Eulerian–variational multiscale formulation augmented with weakly enforced essential boundary conditions. In all cases, the rotor is assumed to be rigid and its rotation is prescribed. The rotor-only simulations are performed for a wide range of wind conditions, and the computational results compare favorably with the experimental findings in all cases. The sliding-interface method is adopted for the simulation of the full wind turbine configuration. The full-wind-turbine simulations capture the blade–tower interaction effect, and the …


Structural Health Monitoring With Piezoelectric Wafer Active Sensors—Predictive Modeling And Simulation, Victor Giurgiutiu Jan 2010

Structural Health Monitoring With Piezoelectric Wafer Active Sensors—Predictive Modeling And Simulation, Victor Giurgiutiu

Faculty Publications

This paper starts a review of the state of the art in structural health monitoring with piezoelectric wafer active sensors and follows with highlighting the limitations of the current approaches which are predominantly experimental. Subsequently, the paper examines the needs for developing a predictive modeling methodology that would allow to perform extensive parameter studies to determine the sensing method’s sensitivity to damage and insensitivity to confounding factors such as environmental changes, vibrations, and structural manufacturing variability. The thesis is made that such a predictive methodology should be multi-scale and multi-domain, thus encompassing the modeling of structure, sensors, electronics, and power …


Effect Of Edge-Stiffening And Diaphragms On The Reliability Of Bridge Girders, Christopher D. Eamon, Andrzej S. Nowak Mar 2005

Effect Of Edge-Stiffening And Diaphragms On The Reliability Of Bridge Girders, Christopher D. Eamon, Andrzej S. Nowak

Civil and Environmental Engineering Faculty Research Publications

Secondary elements such as barriers, sidewalks, and diaphragms may affect the distribution of live load to bridge girders. The objective of this study is to evaluate their effect on girder reliability if these elements are designed to be sufficiently attached to the bridge so as not to detach under traffic live loads. Simple span, two lane structures are considered, with composite steel girders supporting a reinforced concrete deck. Several representative structures are selected, with various configurations of barriers, sidewalks and diaphragms. Bridge analysis is performed using a finite element procedure. Load and resistance parameters are treated as random variables. Random …


Matrix Structural Analysis, 2nd Edition, William Mcguire, Richard H. Gallagher, Ronald D. Ziemian Jan 2000

Matrix Structural Analysis, 2nd Edition, William Mcguire, Richard H. Gallagher, Ronald D. Ziemian

Faculty Books

The aims of the first edition of Matrix Structural Analysis were to place proper emphasis on the methods of matrix structural analysis used in practice and to lay the groundwork for more advanced subject matter. This extensively revised Second Edition accounts for changes in practice that have taken place in the intervening twenty years. It incorporates advances in the science and art of analysis that are suitable for application now, and will be of increasing importance in the years ahead. It is written to meet the needs of both the present and the coming generation of structural engineers.

KEY FEATURES …


Development Of Vibration And Sensitivity Analysis Capability Using The Theory Of Structural Variations, Ting-Yu Rong Jul 1994

Development Of Vibration And Sensitivity Analysis Capability Using The Theory Of Structural Variations, Ting-Yu Rong

Mechanical & Aerospace Engineering Theses & Dissertations

In the author's previous work entitled "General Theorems of Topological Variations of Elastic Structures and the Method of Topological Variation," 1985, some interesting properties of skeletal structures have been discovered. These properties have been described as five theorems and synthesized as a theory, called the theory of structural variations (TSV). Based upon this theory, an innovative analysis tool, called the structural variation method (SVM), has been derived for static analysis of skeletal structures (one-dimensional finite element systems).

The objective of this dissertation research is to extend TSV and SVM from one-dimensional finite element systems to multi-dimensional ones and from statics …