Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Finite element analysis

Discipline
Institution
Publication Year
Publication
Publication Type
File Type

Articles 1 - 30 of 101

Full-Text Articles in Mechanical Engineering

Stress Concentration In Isotropic & Orthotropic Composite Plates With Center Circular Hole Subjected To Transverse Static Loading, Moon Banerjee, N. K. Jain, S. Sanyal Sep 2020

Stress Concentration In Isotropic & Orthotropic Composite Plates With Center Circular Hole Subjected To Transverse Static Loading, Moon Banerjee, N. K. Jain, S. Sanyal

International Journal of Mechanical and Industrial Engineering

The present study brings out the thorough analysis of isotropic and orthotropic fixed rectangular plate with center circular hole under transverse static loading condition. In this paper influence of stress concentration and deflection due to singularity for isotropic and orthotropic composite materials under different parametric conditions is obtained. The effect of thickness -to- width of plate (T/A) and diameter-to-width (D/A) ratio upon stress concentration factor (SCF) for different stresses were studied. An isotropic and one composite material were considered for analysis to determine the variation of SCF with elastic constants. Deflection in transverse direction were calculated and analyzed ...


Comparison Of Conventional Drawing, Inverted Drawing And Warm Forming Processes For Deep Drawing Of Aluminium Cups, Rajaganapathy C, Thivakar K. G, Saravana Kumarn Sep 2020

Comparison Of Conventional Drawing, Inverted Drawing And Warm Forming Processes For Deep Drawing Of Aluminium Cups, Rajaganapathy C, Thivakar K. G, Saravana Kumarn

International Journal of Mechanical and Industrial Engineering

Cup drawing is one of the important operations in sheet metal forming. Manufacturing of the aluminium base cup involves several stages such as blanking, first drawing, second drawing, taper formation and trimming. This increases the process time. An attempt has therefore, been made to develop a comprehensive, rigorous, yet easily-workable method of analysis for designing a die set to combine the intermediate stages of drawing process. Conventional drawing, inverted drawing and warm forming processes are experimented for yielding successful drawing in single setup. Die sets are separately designed for above said processes. The die sets, thus designed is simulated using ...


Steady-State Thermal Stress Analysis Of Gearbox Casing By Finite Element Method, P. D. Patel, D. S. Shah Sep 2020

Steady-State Thermal Stress Analysis Of Gearbox Casing By Finite Element Method, P. D. Patel, D. S. Shah

International Journal of Mechanical and Industrial Engineering

This paper contains the gearbox casing analysis by finite element method (FEM). In previous study the thermal stresses have been affected on the performance of gearbox casing during the running conditions. So, this problem solve by thermal stress analysis method. Thermal stress analysis is the process of analyzing the effect of thermal and mechanical loads, and heat transfer of gearbox casing. In this paper, thermal stresses have been analyzed on gearbox casing, and thus temperature field has been coupled to the 3-Dimensional structure model using Fem. Paper also describes convection effect between the inner-surface of casing and the circulating oil ...


Present Of Three-Layered Hydro-Forming Analysis Of A New Hybrid Sandwich Tubes Using Finite Element Method, J. Shahbazi Karami, K. Malekzadeh, G. Payganeh Aug 2020

Present Of Three-Layered Hydro-Forming Analysis Of A New Hybrid Sandwich Tubes Using Finite Element Method, J. Shahbazi Karami, K. Malekzadeh, G. Payganeh

International Journal of Mechanical and Industrial Engineering

Multi-layered tube hydro-forming is suitable to produce multi-layered joints to be used in special application in many industries. With using a middle layer of foam and making sandwich structures, tube bending strength increases when external loads are applied. Also because of the foam is high energy absorption, in the pipelines of major industries such as the nuclear, strength increases when natural disasters, especially earthquakes happen. In this paper for the first time, three-layered new sandwich tube (inner layer of copper, middle layer of aluminum foam and outer layer of annealed brass) hydroforming processes were numerically simulated using finite element method ...


A Computational Investigation Into Acromial Fractures After Reverse Total Shoulder Arthroplasty, Jason Lockhart Jul 2020

A Computational Investigation Into Acromial Fractures After Reverse Total Shoulder Arthroplasty, Jason Lockhart

Electronic Thesis and Dissertation Repository

Acromial fractures are a debilitating complication following reverse total shoulder arthroplasty (RTSA). The purpose of this work is to (1) improve the current state of FE bone stress estimates after RTSA and to investigate the effects of (2) plane of elevation, (3) hand loads, and (4) baseplate screw position on scapular spine stress. The FE method used was validated against an in-vitro strain gauge based experiment and found to be accurate in the prediction of stress increases and decreases after RTSA. The coronal plane of elevation was found to increase scapular spine stress compared to more central planes of elevation ...


Compaction And Residual Stress Modeling In Composite Manufactured With Automated Fiber Placement, Von Clyde Jamora Apr 2020

Compaction And Residual Stress Modeling In Composite Manufactured With Automated Fiber Placement, Von Clyde Jamora

Mechanical & Aerospace Engineering Theses & Dissertations

Automated fiber placement is a state-of-the-art manufacturing process that allows for complex layup patterns and can quickly place, cut, and restart composite tows. However, with this type of manufacturing process layup defects are inevitable, and manufacturing defects propagate after curing. Process modeling is the considered approach for exploring the defect prediction. Two different but related works were conducted, which are the thermochemical and hyperelastic model and the residual deformation model. For the model before cooling, a hyperelastic model and a thermo-chemical were made to simulate the compaction and heat transfer. Temperature dependent properties that are a function of degree of ...


Influence Of Dynamic Multiaxial Transverse Loading On Ultrahigh Molecular Weight Polyethylene Single Fiber Failure, Frank David Thomas Apr 2020

Influence Of Dynamic Multiaxial Transverse Loading On Ultrahigh Molecular Weight Polyethylene Single Fiber Failure, Frank David Thomas

Theses and Dissertations

High performance fibers such as ultrahigh molecular weight polyethylene (UHMWPE) are often used for ballistic impact applications in the form of textile fabrics and composite laminates. In order to predict the ballistic performance of such materials, single-fiber experiments are performed to quantify the material behavior at smaller length scales, which can be applied to larger length scales as a result. Failure of UHMWPE is well understood as a function of simple tension at low and high strain rates, as well as under various multiaxial loading states. However, experimental characterization of single UHMWPE fibers under transverse loading at high strain rates ...


Predictive Model For Thermal And Stress Field In Selective Laser Melting Process -- Part I, Lan Li, Lei Yan, Wenyuan Cui, Yitao Chen, Tan Pan, Xinchang Zhang, Aaron Flood, Frank W. Liou Aug 2019

Predictive Model For Thermal And Stress Field In Selective Laser Melting Process -- Part I, Lan Li, Lei Yan, Wenyuan Cui, Yitao Chen, Tan Pan, Xinchang Zhang, Aaron Flood, Frank W. Liou

Mechanical and Aerospace Engineering Faculty Research & Creative Works

During the part forming in laser powder bed fusion process, thermal distortion is one big problem due to the thermal stress which is caused by the high cooling rate and temperature gradient. Therefore, it is important to know the effect of process parameters on thermal and stress evolution in the melt zone. In this paper, a 3D finite element model for Selective Laser Melting (SLM) process based on sequentially coupled thermo-mechanical field analysis was developed for accurately predicting thermal history and surface features, like distortion and residual stress. Temperature dependent material properties for performed material 304L stainless steel are incorporated ...


Predictive Model For Thermal And Stress Field In Selective Laser Melting Process -- Part Ii, Lan Li, Lei Yan, Yitao Chen, Tan Pan, Xinchang Zhang, Wenyuan Cui, Aaron Flood, Frank W. Liou Aug 2019

Predictive Model For Thermal And Stress Field In Selective Laser Melting Process -- Part Ii, Lan Li, Lei Yan, Yitao Chen, Tan Pan, Xinchang Zhang, Wenyuan Cui, Aaron Flood, Frank W. Liou

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Finite Element Analysis (FEA) is used to predict the transient thermal cycle and optimize process parameters to analyze these effects on deformation and residual stresses. However, the process of predicting the thermal history in this process with the FEA method is usually time-consuming, especially for large-scale parts. In this paper, an effective predictive model of part deformation and residual stress was developed for accurately predicting deformation and residual stresses in large-scale parts. An equivalent body heat flux proposed from the single layer laser scan model was imported as the thermal load to the layer by layer model. The hatched layer ...


Modeling Thermal And Mechanical Cancellation Of Residual Stress From Hybrid Additive Manufacturing By Laser Peening, Guru Madireddy, Chao Li, Jingfu Liu, Michael P. Sealy Jul 2019

Modeling Thermal And Mechanical Cancellation Of Residual Stress From Hybrid Additive Manufacturing By Laser Peening, Guru Madireddy, Chao Li, Jingfu Liu, Michael P. Sealy

Mechanical & Materials Engineering Faculty Publications

Additive manufacturing (AM) of metals often results in parts with unfavorable mechanical properties. Laser peening (LP) is a high strain rate mechanical surface treatment that hammers a workpiece and induces favorable mechanical properties. Peening strain hardens a surface and imparts compressive residual stresses improving the mechanical properties of a material. This work investigates the role of LP on layer-by-layer processing of 3D printed metals using finite element analysis. The objective is to understand temporal and spatial residual stress development after thermal and mechanical cancellation caused by cyclically coupling printing and peening. Results indicate layer peening frequency is a critical process ...


Analysis And Control Of Fiber-Reinforced Elastomeric Enclosures (Frees), Soheil Habibian Jan 2019

Analysis And Control Of Fiber-Reinforced Elastomeric Enclosures (Frees), Soheil Habibian

Master’s Theses

While rigid robots are extensively used in various applications, they are limited in the tasks they can perform and can be unsafe in close human-robot interactions. Soft robots on the other hand surpass the capabilities of rigid robots in several ways, such as compatibility with the work environments, degrees of freedom, manufacturing costs, and safe interactions with the environment. This thesis studies the behavior of Fiber-Reinforced Elastomeric Enclosures (FREEs) as a particular type of soft pneumatic actuator that can be used in soft manipulators. A dynamic lumped-parameter model is created to simulate the motion of a single FREE under various ...


Nonprehensile Manipulation Of Deformable Objects: Achievements And Perspectives From The Rodyman Project, Aykut C. Satici Sep 2018

Nonprehensile Manipulation Of Deformable Objects: Achievements And Perspectives From The Rodyman Project, Aykut C. Satici

Mechanical and Biomedical Engineering Faculty Publications and Presentations

The goal of this work is to disseminate the results achieved so far within the RODYMAN project related to planning and control strategies for robotic nonprehensile manipulation. The project aims at advancing the state of the art of nonprehensile dynamic manipulation of rigid and deformable objects to future enhance the possibility of employing robots in anthropic environments. The final demonstrator of the RODYMAN project will be an autonomous pizza maker. This article is a milestone to highlight the lessons learned so far and pave the way towards future research directions and critical discussions.


Experimental And Modeling Study Of Compressive Creep In 3d-Woven Ni-Based Superalloys, Hoon-Hwe Cho, Dinc Erdeniz, Keith W. Sharp, David C. Dunand Aug 2018

Experimental And Modeling Study Of Compressive Creep In 3d-Woven Ni-Based Superalloys, Hoon-Hwe Cho, Dinc Erdeniz, Keith W. Sharp, David C. Dunand

Mechanical Engineering Faculty Research and Publications

Micro-architectured Ni-based superalloy structures, with Ni-20Cr-3Ti-2Al (wt.%) composition and γ/γ′-microstructure, are created by a multi-step process: (i) non-crimp orthogonal 3D-weaving of ductile, 202 μm diameter Ni-20%Cr wires, (ii) gas-phase alloying with Al and Ti, (iii) simultaneous transient-liquid phase (TLP) bonding between wires and homogenization within wires via interdiffusion, (iv) solutionizing to create a single-phase solid solution, and (v) aging to precipitate the γ′ phase. The creep behavior of these 3D-woven γ/γ′ nickel-based superalloys is studied under uniaxial compression via experiments at 825 °C and via finite element (FE) analysis, using a 3D model of the woven ...


Human Knee Fea Model For Transtibial Amputee Tibial Cartilage Pressure In Gait And Cycling, Gregory Lane Jun 2018

Human Knee Fea Model For Transtibial Amputee Tibial Cartilage Pressure In Gait And Cycling, Gregory Lane

Master's Theses

Osteoarthritis (OA) is a debilitating disease affecting roughly 31 million Americans. The incidence of OA is significantly higher for persons who have suffered a transtibial amputation. Abnormal cartilage stress can cause higher OA risk, however it is unknown if there is a connection between exercise type and cartilage stress. To help answer this, a tibiofemoral FEA model was created. Utilizing linear elastic isotropic materials and non-linear springs, the model was validated to experimental cadaveric data. In a previous study, 6 control and 6 amputee subjects underwent gait and cycling experiments. The resultant knee loads were analyzed to find the maximum ...


Modeling Residual Stress Development In Hybrid Processing By Additive Manufacturing And Laser Shock Peening, Guru Charan Reddy Madireddy Apr 2018

Modeling Residual Stress Development In Hybrid Processing By Additive Manufacturing And Laser Shock Peening, Guru Charan Reddy Madireddy

Mechanical (and Materials) Engineering -- Dissertations, Theses, and Student Research

The term “hybrid” has been widely applied to many areas of manufacturing. Naturally, that term has found a home in additive manufacturing as well. Hybrid additive manufacturing or hybrid-AM has been used to describe multi-material printing, combined machines (e.g., deposition printing and milling machine center), and combined processes (e.g., printing and interlayer laser re-melting). The capabilities afforded by hybrid-AM are rewriting the design rules for materials and adding a new dimension in the design for additive manufacturing paradigm. This work focuses on hybrid-AM processes, which are defined as the use of additive manufacturing (AM) with one or more ...


Manufacturing Process Simulation – On Its Way To Industrial Application, Dennis Otten, Tobias A. Weber, Jan-Christoph Arent Mar 2018

Manufacturing Process Simulation – On Its Way To Industrial Application, Dennis Otten, Tobias A. Weber, Jan-Christoph Arent

International Journal of Aviation, Aeronautics, and Aerospace

Manufacturing process simulation (MPS) has become more and more important for aviation and the automobile industry. A highly competitive market requires the use of high performance metals and composite materials in combination with reduced manufacturing cost and time as well as a minimization of the time to market for a new product. However, the use of such materials is expensive and requires sophisticated manufacturing processes. An experience based process and tooling design followed by a lengthy trial-and-error optimization is just not contemporary anymore. Instead, a tooling design process aided by simulation is used more often. This paper provides an overview ...


Tissue Stresses In Stented Coronary Arteries With Different Geometries: Effect Of The Relation Between Stent Length And Lesion Length, Xiang Shen, Song Ji, Yong-Quan Deng, Hong-Fei Zhu, Jia-Bao Jiang, Linxia Gu Jan 2018

Tissue Stresses In Stented Coronary Arteries With Different Geometries: Effect Of The Relation Between Stent Length And Lesion Length, Xiang Shen, Song Ji, Yong-Quan Deng, Hong-Fei Zhu, Jia-Bao Jiang, Linxia Gu

Mechanical & Materials Engineering Faculty Publications

In-stent restenosis after stent deployment remains an obstruction in the long-term benefits of stenting. This study sought to investigate the influence of the relation between stent length and lesion length on the mechanics of the arterial wall with different geometries, including straight and tapered vessels. Results showed that when the length of the stent was longer than the lesion length, the maximum stress in plaque and vessel increased as the length of stent increased. When the length of the stent was shorter than the lesion length, the vessel stress induced by stent inflation was lower; both ends of the stenosis ...


Wear Evolution And Stress Distribution Of Single Cbn Superabrasive Grain In High-Speed Grinding, Jingwei Wang, Tianyu Yu, Wenfeng Ding, Yucan Fu, Ashraf F. Bastawros Jan 2018

Wear Evolution And Stress Distribution Of Single Cbn Superabrasive Grain In High-Speed Grinding, Jingwei Wang, Tianyu Yu, Wenfeng Ding, Yucan Fu, Ashraf F. Bastawros

Aerospace Engineering Publications

In this study, both finite element analysis (FEA) and experimental observations were used to investigate the single CBN grain wear in high-speed grinding of Inconel 718 superalloy. The wear characteristics for each grinding pass were numerically assessed utilizing the tensile and compressive strength limits of the cutting grain. Additionally, stress distribution within the grain, chip formation and grinding force evolution during multiple passes were investigated. The combined experimental and numerical results show that the CBN grain wear has two major modes: the macro fracture on the grain top surface propagating from the rake surface, and the micro fracture near the ...


A Scientific Approach To Understanding The Head Trauma Endured By A Mixed Martial Arts Fighter, John William Michael Sorbello Jan 2018

A Scientific Approach To Understanding The Head Trauma Endured By A Mixed Martial Arts Fighter, John William Michael Sorbello

Mechanical & Aerospace Engineering Theses & Dissertations

The purpose of this research is to gain some insight on the type of head trauma an athlete may encounter during mixed martial arts (MMA) competition. These athletes endure continuous blows to the head throughout their training and fighting career. The knowledge obtained from this research may assist MMA athletes and trainers in assessing the way they train, how they compete and, more importantly, how long they choose to compete in their amateur or professional MMA career.

The analysis is performed by first creating a three-dimensional solid model of the human head based on geometric coordinates originally obtained from a ...


Characterizing Anisotropy In Fibrous Soft Materials By Mr Elastography Of Slow And Fast Shear Waves, John Larson Schmidt Dec 2017

Characterizing Anisotropy In Fibrous Soft Materials By Mr Elastography Of Slow And Fast Shear Waves, John Larson Schmidt

Engineering and Applied Science Theses & Dissertations

The general objective of this work was to develop experimental methods based on magnetic resonance elastography (MRE) to characterize fibrous soft materials. Mathematical models of tissue biomechanics capable of predicting injury, such as traumatic brain injury (TBI), are of great interest and potential. However, the accuracy of predictions from such models depends on accuracy of the underlying material parameters. This dissertation describes work toward three aims. First, experimental methods were designed to characterize fibrous materials based on a transversely isotropic material model. Second, these methods are applied to characterize the anisotropic properties of white matter brain tissue ex vivo. Third ...


Adhesion And Wear Of Nanoscale Polymer Contacts, Yijie Jiang Jan 2017

Adhesion And Wear Of Nanoscale Polymer Contacts, Yijie Jiang

Publicly Accessible Penn Dissertations

Atomic force microscopy (AFM) is a powerful tool for high resolution surface measurements, nanolithography, and tip-based nanomanufacturing. An understanding of the nanoscale tribological behavior of the tip-sample contact, including adhesion and wear, is critical in these applications. In this dissertation, the adhesion and wear of polymethyl methacrylate (PMMA) in contact with an ultrananocrystalline diamond (UNCD) AFM tip is investigated using a combination of AFM-based nanomechanics experiments and finite element analysis (FEA).

A novel AFM-based method, which combines pull-off force measurements and characterization of the 3D geometry of AFM tip, was developed to quantify the properties of the adhesive traction-separation relationship ...


Finite Element Simulation And Additive Manufacturing Of Stiffness-Matched Niti Fixation Hardware For Mandibular Reconstruction Surgery, Ahmadreza Jahadakbar, Narges Shayesteh Moghaddam, Amirhesam Amerinatanzi, David Dean, Haluk E. Karaca, Mohammad Elahinia Dec 2016

Finite Element Simulation And Additive Manufacturing Of Stiffness-Matched Niti Fixation Hardware For Mandibular Reconstruction Surgery, Ahmadreza Jahadakbar, Narges Shayesteh Moghaddam, Amirhesam Amerinatanzi, David Dean, Haluk E. Karaca, Mohammad Elahinia

Mechanical Engineering Faculty Publications

Process parameters and post-processing heat treatment techniques have been developed to produce both shape memory and superelastic NiTi using Additive Manufacturing. By introducing engineered porosity, the stiffness of NiTi can be tuned to the level closely matching cortical bone. Using additively manufactured porous superelastic NiTi, we have proposed the use of patient-specific, stiffness-matched fixation hardware, for mandible skeletal reconstructive surgery. Currently, Ti-6Al-4V is the most commonly used material for skeletal fixation devices. Although this material offers more than sufficient strength for immobilization during the bone healing process, the high stiffness of Ti-6Al-4V implants can cause stress shielding. In this paper ...


Numerical And Experimental Investigation Of Viscous Pressure Forming (Vpf) Process For Metal Bellows, Zhongjin Wang, Nan Xiang, Chunjun Dai Oct 2016

Numerical And Experimental Investigation Of Viscous Pressure Forming (Vpf) Process For Metal Bellows, Zhongjin Wang, Nan Xiang, Chunjun Dai

The 8th International Conference on Physical and Numerical Simulation of Materials Processing

No abstract provided.


Modeling Of Lightning-Induced Thermal Ablation Damage In Anisotropic Composite Materials And Its Application To Wind Turbine Blades, Yeqing Wang Aug 2016

Modeling Of Lightning-Induced Thermal Ablation Damage In Anisotropic Composite Materials And Its Application To Wind Turbine Blades, Yeqing Wang

Theses and Dissertations

A primary motivation for this research comes from the need to improve the ability of polymer-matrix composites to withstand lightning strikes. In particular, we are concerned with lightning strike damage in composite wind turbine blades. The direct effects of lightning strike on polymer-matrix composites often include rapid temperature rise, melting or burning at the lightning attachment points, and mechanical damage due to lightning-induced magnetic force and acoustic shock wave. The lightning strike damage accumulation problem is essentially multiphysic. The lightning plasma channel discharges an electric current up to 200 kA, inducing a severe heat flux at the surface of the ...


Analytical Investigation Of Fretting Wear With Special Emphasis On Stress Based Models, Arnab Jyoti Ghosh Mar 2016

Analytical Investigation Of Fretting Wear With Special Emphasis On Stress Based Models, Arnab Jyoti Ghosh

Open Access Dissertations

Fretting refers to the minute oscillatory motion between two surfaces in contact under an applied normal load. It can cause either surface or subsurface initiated failure resulting in either fatigue or wear or both. Two distinct regimes – partial slip and gross slip are typically observed in fretting contacts. Due to the nature of contact, various factors such as wear debris, oxidation, surface roughness, humidity etc. effect failures caused due to fretting. A number of different techniques have been developed to quantify fretting damage and several numerical models are proposed to predict damage due to fretting. Fretting wear also depends on ...


Methodology For Analyzing Epoxy-Cnt Phononic Crystals For Wave Attenuation And Guiding, Madhu Kolati Jan 2016

Methodology For Analyzing Epoxy-Cnt Phononic Crystals For Wave Attenuation And Guiding, Madhu Kolati

Dissertations, Master's Theses and Master's Reports

Phononic crystals (PhnCs) control, direct and manipulate sound waves to achieve wave guiding and attenuation. This dissertation presents methodology for analyzing nanotube materials based phononic crystals to achieve control over sound, vibration and stress mitigation. Much of the analytical work presented is in identifying frequency band gaps in which sound or vibration cannot propagate through these PhnCs. Wave attenuation and mitigation analysis is demonstrated using finite element simulation. Engineering principles from current research areas of solid mechanics, solid-state physics, elasto-dynamics, mechanical vibrations and acoustics are employed for the methodology. A considerable effort is put to show that these PhnCs can ...


Manufacturing And Mechanics Of Polymer Matrix Composites, Md Shariful Islam Jan 2016

Manufacturing And Mechanics Of Polymer Matrix Composites, Md Shariful Islam

Open Access Theses & Dissertations

Fiber-reinforced composite materials are widely used in the aerospace and automobile industries. Their strength-to-weight and stiffness-to-weight ratios make them suitable to be used in spacecraft, especially as cryogenic tank materials. One of the focus of this dissertation is to investigate the application of woven carbon and Kevlar® fiber composites as cryogenic tank materials. Tensile, bending and short beam shear tests are performed on rectangular specimens at room temperature and after cryogenic exposure (-196°C). It is found that the mechanical properties of these composite materials do not degrade significantly due to cryogenic exposure. It is observed that the failure mode ...


Design Optimization Of Sandwich Core, Mohammad Tauhiduzzaman Jan 2016

Design Optimization Of Sandwich Core, Mohammad Tauhiduzzaman

Open Access Theses & Dissertations

Ultralight sandwich structures comprising of low-density core with stiff facings have attracted significant research interest for their considerable weight saving applications. The aircraft industries are focusing on decreasing the structural mass to lower the manufacturing and operating costs. Design analysis of the sandwich cores using finite element analysis has been developed as a promising concept to feature sandwich structures with maximum strength, stiffness, and reduced weight. To obtain multifunctional behavior of sandwich panels, a profound investigation of geometrical and mechanical properties in the transverse plane is required because it is very susceptible to any kind loadings. Structural optimization is one ...


Numerical Simulation Of Continuous Rotary Extrusion Of Magnesium Az91 Alloy, Nijenthan Rajendran Jan 2016

Numerical Simulation Of Continuous Rotary Extrusion Of Magnesium Az91 Alloy, Nijenthan Rajendran

Theses and Dissertations

Continuous Rotary Extrusion (CRE) is well known process known also under Conform name used for extrusion of Aluminum and Copper alloys. Magnesium is the lightest major engineering construction metal, and due to its good mechanical properties, it has been used increasingly as a substitute for aluminum and steel in particularly aerospace and automotive industries. Magnesium alloys are difficult to deform at room temperature due to its hexagonal crystal structure. Therefore, Magnesium has to be processed at elevated temperature in order to take advantage of the increased ductility at these temperatures. From the literature survey it is clear that better mechanical ...


Methods And Implementation Of Fluid-Structure Interaction Modeling Into An Industry-Accepted Design Tool, Donn R. Sederstrom Jan 2016

Methods And Implementation Of Fluid-Structure Interaction Modeling Into An Industry-Accepted Design Tool, Donn R. Sederstrom

Electronic Theses and Dissertations

Fluid-structure interaction (FSI) modeling is a method by which fluid and solid domains are coupled together to produce a single result that cannot be produced if each physical domain was evaluated individually. The work presented in this dissertation is a demonstration of the methods and implementation of FSI modeling into an industry-appropriate design tool. Through utilizing computationally inexpensive equipment and commercially available software, the studies presented in this work demonstrate the ability for FSI modeling to become a tool used broadly in industry.

To demonstrate this capability, the cases studied purposely include substantial complexity to demonstrate the stability techniques required ...