Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Mechanical Engineering

Techno-Economic Analysis Of Hydrogen Fuel Cell Systems Used As An Electricity Storage Technology In A Wind Farm With Large Amounts Of Intermittent Energy, Yash Sanghai Jan 2013

Techno-Economic Analysis Of Hydrogen Fuel Cell Systems Used As An Electricity Storage Technology In A Wind Farm With Large Amounts Of Intermittent Energy, Yash Sanghai

Masters Theses 1911 - February 2014

With the growing demand for electricity, renewable sources of energy have garnered a lot of support from all quarters. The problem with depending on these renewable sources is that the output from them is independent of the demand. Storage of electricity gives us an opportunity to effectively manage and balance the supply and demand of electricity. Fuel cells are a fast developing and market capturing technology that presents efficient means of storing electricity in the form of hydrogen. The aim of this research is to study the impact of integrating hydrogen fuel cell storage system with a wind farm to …


Background And Available Potential Energy In Numerical Simulations Of A Boussinesq Fluid, Shreyas S. Panse Jan 2013

Background And Available Potential Energy In Numerical Simulations Of A Boussinesq Fluid, Shreyas S. Panse

Masters Theses 1911 - February 2014

In flows with stable density stratification, a portion of the gravitational potential energy is available for conversion to kinetic energy. The remainder is not and is called “background potential energy”. The partition of potential energy is analogous to the classical division of energy due to motion into its kinetic and internal components. Computing background and available potential energies is important for understanding stratified flows. In many numerical simulations, though, the Boussinesq approximations to the Navier-Stokes equations are employed. These approximations are not consistent with conservation of energy. In this thesis we re-derive the governing equations for a buoyancy driven fluid …