Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 17 of 17

Full-Text Articles in Mechanical Engineering

Landing Gear Sealing Solution, Andrew Milligan Jan 2023

Landing Gear Sealing Solution, Andrew Milligan

Williams Honors College, Honors Research Projects

XYZ Landing Gear Solutions has been tasked with redesigning two internal components of the landing gears for the ABC-123 aircraft program. The customer, ABC Aeronautics, informed XYZ Landing Gear Solutions that a particular system of the landing gear does not meet the necessary performance requirements of the program. As a result, the entire system will have to be removed, facilitating the need for a redesign of the two components that the system interfaced with. The focus of this project will be completing the redesign process for both of these components. “Redesign” and “design” will be used interchangeably in this report. …


Design Of Composite Joints Using Machine Learning Approaches, Natalie Richards Jan 2022

Design Of Composite Joints Using Machine Learning Approaches, Natalie Richards

Williams Honors College, Honors Research Projects

Adhesively bonded joints have an advantage in joining dissimilar engineering materials due to their high structural efficiency and being lightweight. These joints are either between two opposite laminates or between a composite laminate and a metal structure. The aerospace and automotive industries have seen an increase in utilizing these adhesive joints in their engineering applications. Joint strength along with the failure mode (adhesive, delamination, etc.) is the most important parameter to evaluate when understanding the capability of the adhesive joint. In this paper, a regression and a classification machine learning (ML) model are utilized to predict the failure load and …


Door Barricade, Alex Cerino Jan 2021

Door Barricade, Alex Cerino

Williams Honors College, Honors Research Projects

My senior capstone project will be a door barricade. The main idea for the use of the door barricade is for schools in the case of an intruder. The barricade that I will be designing is a solution to the inefficient barricades that I saw at my high school. It could also be used at businesses and homes. My design would be easy to use and have a fail-safe option. The two areas of mechanical engineering technology that my capstone project will focus on are stress analysis and electronics. Every part for my door barricade is drawn in SolidWorks. All …


Customizable Armor Set, Olivia Reedy Jan 2021

Customizable Armor Set, Olivia Reedy

Williams Honors College, Honors Research Projects

This project is intended to help people who make costume armor by reducing the amount of time and money it takes to create a set of armor. Making armor can take a lot of resources for beginners, and this project is intended to help hobbyists with that process. This customizable armor set goes through the engineering design process, from the initial design of the parts to creating the prototype using vacuum forming. The prototype armor can be painted and adhered to using acrylic paint and contact cement, respectively, and fits three sizes of small, medium, and large.


Formula Sae Design Validation Through Lap Time Simulation, Noah Gresser, Akos Jasper, Michael Metropoulos, Paul Buczynski, James Volcansek Jan 2021

Formula Sae Design Validation Through Lap Time Simulation, Noah Gresser, Akos Jasper, Michael Metropoulos, Paul Buczynski, James Volcansek

Williams Honors College, Honors Research Projects

Lap time simulation is capable of advancing Zips Racing into a new, modern era for future vehicle designs. Through the use of VI-grade simulation software, Zips Racing was able to validate its current combustion and electric vehicle designs in spite of the challenges brought on to the team as a result of the COVID-19 pandemic. Throughout this project, the design team gained an enhanced understanding of suspension designs and optimizations through the usage of computer simulations. As a result, the teams have a better understanding of the fundamental changes that need to occur to enhance the race team’s final race …


Ideal Lacrosse Stick, Josh Beck, Tyler Skoloda, Noah Reed, Stanley Dembosky Jan 2020

Ideal Lacrosse Stick, Josh Beck, Tyler Skoloda, Noah Reed, Stanley Dembosky

Williams Honors College, Honors Research Projects

This project is focused on the design of a new and innovative lacrosse stick. Our main points of focus will be the strength and durability of the head. As well as solving some of the problems that exist in existing equipment. These problems were identified by interviewing experienced players at the college level. Benefits would include a stronger head that is easier to use for a player on the field to do things like pass, catch, shoot, and field ground balls in an optimal manner. Normally players will have to purchase new heads every season as a result of warping …


Tabletop Mechanical Tester, Jamie Dombroski, Brian English, Richard Leffler, Andrew Shirk Jan 2020

Tabletop Mechanical Tester, Jamie Dombroski, Brian English, Richard Leffler, Andrew Shirk

Williams Honors College, Honors Research Projects

The need for hands-on and face-to-face experiences in the engineering classroom is very great. The equations, principles, and concepts can all be learned, but without the visual and tactile application, these don’t always sink in or become concrete. A small-scale tensile test machine was designed, sourced, manufactured, and tested for the purpose of being applied in classroom settings to provide this experience to engineering students. Extensive research was performed concerning tensile machines on the market, the essential elements of which are the load cell, grips, crosshead, extensometer, motor, and frame. The raw materials for the frame were purchased and drawings …


Senior Design Proposal For Brakes Subsystem 2019-2020, Jasmine Zogheib, Zachary Demetriades, Devin Seay Jan 2020

Senior Design Proposal For Brakes Subsystem 2019-2020, Jasmine Zogheib, Zachary Demetriades, Devin Seay

Williams Honors College, Honors Research Projects

This report concentrates on efforts to design a new braking system for the Zips Formula Electric Race Team. The improvements to the braking system will be based upon previous years’ official designs along with optimizing for predetermined criteria. The design will be influenced based on design factors of the car such as weight, center of gravity, wheelbase, and integration with other systems of the car.


Fatigue Tester, Nicholas Fazio Jan 2019

Fatigue Tester, Nicholas Fazio

Williams Honors College, Honors Research Projects

The purpose of this project is to combine all my experience, knowledge and skills that I’ve acquired over the years as a Mechanical Engineering Technology student to completely design and build a fatigue tester. This will give me valuable experience in the process of designing and assembling a product and give me a great example to add to my portfolio. The tester will be completed through a process of researching design and modeling. Once everything is properly calculated and designed the parts that can be fabricated will. The rest will be ordered and then everything will be assembled. Upon completion, …


Reactive Archey Target Design Team "Mimic", Brandon Croyle, Jacob Boss, David Rodgers, Austin Wivell Jan 2019

Reactive Archey Target Design Team "Mimic", Brandon Croyle, Jacob Boss, David Rodgers, Austin Wivell

Williams Honors College, Honors Research Projects

This design project will aim to provide archery hunters with a platform to simulate shooting at string jumping deer. String jumping refers to a spooked deer hearing the snap of a bow string and instintivly ducking up to ten inches. This often results in wounded or missed deer. We will design and build a control system that uses the sound of a bow string as a trigger to operate a mechanical target system. A sound sensor will mimic a deer’s hearing in close range hunting and then send a signal to the mechanical system to replicate the dropping motion of …


Water Jet Cutting Head Actuator, Jacob D. Augustynovich Jan 2017

Water Jet Cutting Head Actuator, Jacob D. Augustynovich

Williams Honors College, Honors Research Projects

In an effort to increase efficiency and productivity, WARDJet was seeking a better actuation method for the cutting head on their waterjets. Current actuation methods were, for the most part, purely mechanical, relying on compressed air, springs, and water pressure to open and close the valve to 60,000 psi of water. Increasing the speed of the on/off cycle times of the waterjet would allow for faster movements of the cutting head from one cut to the next, increasing the overall amount of products cut in a day, week, and year. This obviously points to increased sales, increased profit, and increased …


2015 Zips Sae Baja Brakes And Throttle System, Philip A. Bennett Jan 2015

2015 Zips Sae Baja Brakes And Throttle System, Philip A. Bennett

Williams Honors College, Honors Research Projects

The SAE Baja student design team at The University of Akron is one of the longest-standing design teams at the university. The purpose of this team is to design, manufacture, test, and race an off-road vehicle within the guidelines of competition established by the Society of Automotive Engineers. The vehicle is made up of a small number of subsystems including frame, drivetrain, suspension, steering, and braking. The following will discuss all aspects of the design process of the braking and throttle system of the 2015 Zips Baja car. This process includes several steps and considerations such as design goals, system …


Senior Design: Kong Toy Instruction-Manual Insertion, Rachael L. Innocenzi, Ashley N. Cuthbert, Marianna R. Smith Jan 2015

Senior Design: Kong Toy Instruction-Manual Insertion, Rachael L. Innocenzi, Ashley N. Cuthbert, Marianna R. Smith

Williams Honors College, Honors Research Projects

The team’s goal is to design and test a prototype and procedure that will automate the insertion of the Kong toy instructions into the cardboard packaging. This automation will increase the speed at which the product is packaged and will serve as an aid to workers with limited dexterity who find the task cumbersome.


Senior Design: Kong Toy Instruction-Manual Insertion, Marianna R. Smith, Rachael L. Innocenzi, Ashley N. Cuthbert Jan 2015

Senior Design: Kong Toy Instruction-Manual Insertion, Marianna R. Smith, Rachael L. Innocenzi, Ashley N. Cuthbert

Williams Honors College, Honors Research Projects

The team’s goal is to design and test a prototype and procedure that will automate the insertion of the

Kong toy instructions into the cardboard packaging. This automation will increase the speed at which

the product is packaged and will serve as an aid to workers with limited dexterity who find the task

cumbersome.


Senior Design:Kong Toy Instruction-Manual Insertion, Ashley N. Cuthbert, Rachael L. Innocenzi, Marianna R. Smith Jan 2015

Senior Design:Kong Toy Instruction-Manual Insertion, Ashley N. Cuthbert, Rachael L. Innocenzi, Marianna R. Smith

Williams Honors College, Honors Research Projects

The team’s goal is to design and test a prototype and procedure that will automate the insertion of the Kong toy instructions into the cardboard packaging. This automation will increase the speed at which the product is packaged and will serve as an aid to workers with limited dexterity who find the task cumbersome.


Designing A Heat Sink For Lithium-Ion Battery Packs In Electric Vehicles, Dylan Irvine, Evan Foreman, Christopher B. Remington, Aaron Jackson, Sam Endrizzi Jan 2015

Designing A Heat Sink For Lithium-Ion Battery Packs In Electric Vehicles, Dylan Irvine, Evan Foreman, Christopher B. Remington, Aaron Jackson, Sam Endrizzi

Williams Honors College, Honors Research Projects

This report addresses the concepts and implementation of fluid cooled heat sink designs for an electric or hybrid vehicle battery. To determine the battery’s temperature and heat flux profile, testing was performed by measuring these values at multiple locations on a lithium-ion pouch battery using heat flux sensors and thermocouples during the charge and discharge cycles of the battery. Once the data was collected and analyzed, trendlines were fit to the heat flux data then used to create equations for the heat flux profile during the discharging stage. Each equation represented a specific region on the battery geometry. Four heat …


Designing A Heat Sink For Lithium-Ion Battery Packs In Electric Vehicles, Evan Foreman, Dylan Irvine, Aaron Jackson, Christopher Brandon Remington, Sam Endrizzi Jan 2015

Designing A Heat Sink For Lithium-Ion Battery Packs In Electric Vehicles, Evan Foreman, Dylan Irvine, Aaron Jackson, Christopher Brandon Remington, Sam Endrizzi

Williams Honors College, Honors Research Projects

This report addresses the concepts and implementation of fluid cooled heat sink designs for an electric or hybrid vehicle battery. To determine the battery’s temperature and heat flux profile, testing was performed by measuring these values at multiple locations on a lithium-ion pouch battery using heat flux sensors and thermocouples during the charge and discharge cycles of the battery. Once the data was collected and analyzed, trendlines were fit to the heat flux data then used to create equations for the heat flux profile during the discharging stage. Each equation represented a specific region on the battery geometry. Four heat …