Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Mechanical Engineering

Modeling, Simulation And Control Of Microrobots For The Microfactory., Zhong Yang May 2023

Modeling, Simulation And Control Of Microrobots For The Microfactory., Zhong Yang

Electronic Theses and Dissertations

Future assembly technologies will involve higher levels of automation in order to satisfy increased microscale or nanoscale precision requirements. Traditionally, assembly using a top-down robotic approach has been well-studied and applied to the microelectronics and MEMS industries, but less so in nanotechnology. With the boom of nanotechnology since the 1990s, newly designed products with new materials, coatings, and nanoparticles are gradually entering everyone’s lives, while the industry has grown into a billion-dollar volume worldwide. Traditionally, nanotechnology products are assembled using bottom-up methods, such as self-assembly, rather than top-down robotic assembly. This is due to considerations of volume handling of large …


Ball Oscillating Bouncer, Eric Blok, Daniel Altemese, Ryan Nowacki, Maram Qurban Jan 2018

Ball Oscillating Bouncer, Eric Blok, Daniel Altemese, Ryan Nowacki, Maram Qurban

Williams Honors College, Honors Research Projects

The purpose of this report is to document the need, objectives, marketing and engineering requirements, as well as validate the design of an autonomous control device capable of continuously bouncing a table tennis ball on a paddle. This includes the design of a self correcting system using lightweight materials, and as few sensors and components as possible to achieve a compact, portable design. To accomplish this, the system is designed to react to a ball falling from as short a distance as 10 centimeters above the paddle, meaning all sensor processing, control processing, and motor drives should be able to …


Simulation, Control And Testing Of Advanced Hydraulic Hybrid Transmissions, Italo M. Ramos, Monika Ivantysynova, Michael Sprengel Aug 2015

Simulation, Control And Testing Of Advanced Hydraulic Hybrid Transmissions, Italo M. Ramos, Monika Ivantysynova, Michael Sprengel

The Summer Undergraduate Research Fellowship (SURF) Symposium

Hydraulic hybrids transmissions have the potentially to substantially improve the fuel efficiency of on road vehicles. In fact recent studies have demonstrated that this technology can improve fuel economy by upwards of 30% over competing electric hybrids. To further improve the fuel economy and performance of this technology a novel blended hydraulic hybrid transmission has been constructed at the Maha Fluid Power Research Center. While this novel hybrid architecture created by the Maha lab has many benefits over conventional systems, there are a number of control challenges present due to several discrete modes of operation. And though improving fuel economy …


Ubot-7: The Design Of A Compliant Dexterous Mobile Manipulator, Jonathan Cummings Nov 2014

Ubot-7: The Design Of A Compliant Dexterous Mobile Manipulator, Jonathan Cummings

Masters Theses

This thesis presents the design of uBot-7, the latest version of a dexterous mobile manipulator. This platform has been iteratively developed to realize a high performance-to-cost dexterous whole body manipulator with respect to mobile manipulation. The semi-anthropomorphic design of the uBot is a demonstrated and functional research platform for developing advanced autonomous perception, manipulation, and mobility tasks. The goal of this work is to improve the uBot’s ability to sense and interact with its environment in order to increase the platforms capability to operate dexterously, through the incorporation of joint torque feedback, and safely, through the implementation of passive and …


Modeling, Analysis, And Control Of A Mobile Robot For In Vivo Fluoroscopy Of Human Joints During Natural Movements, Matthew A. Young May 2014

Modeling, Analysis, And Control Of A Mobile Robot For In Vivo Fluoroscopy Of Human Joints During Natural Movements, Matthew A. Young

Doctoral Dissertations

In this dissertation, the modeling, analysis and control of a multi-degree of freedom (mdof) robotic fluoroscope was investigated. A prototype robotic fluoroscope exists, and consists of a 3 dof mobile platform with two 2 dof Cartesian manipulators mounted symmetrically on opposite sides of the platform. One Cartesian manipulator positions the x-ray generator and the other Cartesian manipulator positions the x-ray imaging device. The robotic fluoroscope is used to x-ray skeletal joints of interest of human subjects performing natural movement activities. In order to collect the data, the Cartesian manipulators must keep the x-ray generation and imaging devices accurately aligned while …


Reducing Energy Costs By Optimizing Controller Tuning, Aidan O'Dwyer Jan 2006

Reducing Energy Costs By Optimizing Controller Tuning, Aidan O'Dwyer

Conference papers

The proportional integral derivative (PID) controller is the most dominant form of automatic controller in industrial use today. With this technique, it is necessary to adjust the controller parameters according to the nature of the process. This tailoring of controller to process is known as controller tuning. Controller tuning is easily and effectively performed using tuning rules (i.e. formulae for controller tuning, based on process information). Such tuning rules allow the easy set up of controllers to achieve optimum performance at commissioning. Importantly, they allow ease of re-commissioning if the characteristics of the process change. The paper outlines the results …