Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 20 of 20

Full-Text Articles in Mechanical Engineering

Development Of A New Lagrangian Float For Studying Coastal Marine Ecosystems, Alex Schwithal, Chris Roman Jan 2013

Development Of A New Lagrangian Float For Studying Coastal Marine Ecosystems, Alex Schwithal, Chris Roman

Christopher N. Roman

This paper presents an overview and initial testing results for a shallow water Lagrangian float designed to operate in coastal settings. The presented effort addresses the two main characteristics of the shallow coastal environment that preclude the direct of use of many successfully deep water floats, namely the higher variation of water densities near the coast compared with the open ocean and the highly varied bathymetry. Our idea is to develop a high capacity dynamic auto-ballasting system that is able to compensate for the expected seawater density variation over a broad range of water temperatures and salinities while using measurements …


Deep Sea Underwater Robotic Exploration In The Ice-Covered Arctic Ocean With Auvs, Clayton Kunz, Chris Murphy, Richard Camilli, Hanumant Singh, John Bailey, Ryan M. Eustice, Chris Roman, Michael Jakuba, Claire Willis, Taichi Sato, Ko-Ichi Nakamura, Robert A. Sohn Jan 2013

Deep Sea Underwater Robotic Exploration In The Ice-Covered Arctic Ocean With Auvs, Clayton Kunz, Chris Murphy, Richard Camilli, Hanumant Singh, John Bailey, Ryan M. Eustice, Chris Roman, Michael Jakuba, Claire Willis, Taichi Sato, Ko-Ichi Nakamura, Robert A. Sohn

Christopher N. Roman

The Arctic seafloor remains one of the last unexplored areas on Earth. Exploration of this unique environment using standard remotely operated oceanographic tools has been obstructed by the dense Arctic ice cover. In the summer of 2007 the Arctic Gakkel Vents Expedition (AGAVE) was conducted with the express intention of understanding aspects of the marine biology, chemistry and geology associated with hydrothermal venting on the section of the mid-ocean ridge known as the Gakkel Ridge. Unlike previous research expeditions to the Arctic the focus was on high resolution imaging and sampling of the deep seafloor. To accomplish our goals we …


Application Of Structured Light Imaging For High Resolution Mapping Of Underwater Archaeological Sites, Chris Roman, Gabrielle Inglis, James Rutter Dec 2012

Application Of Structured Light Imaging For High Resolution Mapping Of Underwater Archaeological Sites, Chris Roman, Gabrielle Inglis, James Rutter

Christopher N. Roman

This paper presents results from recent work using structured light laser profile imaging to create high resolution bathymetric maps of underwater archaeological sites. Documenting the texture and structure of submerged sites is a difficult task and many applicable acoustic and photographic mapping techniques have recently emerged. This effort was completed to evaluate laser profile imaging in comparison to stereo imaging and high frequency multibeam mapping. A ROV mounted camera and inclined 532 nm sheet laser were used to create profiles of the bottom that were then merged into maps using platform navigation data. These initial results show very promising resolution …


A Pipeline For Structured Light Bathymetric Mapping, Gabrielle Inglis, Clara Smart, J. Vaughn, Chris Roman Oct 2012

A Pipeline For Structured Light Bathymetric Mapping, Gabrielle Inglis, Clara Smart, J. Vaughn, Chris Roman

Christopher N. Roman

This paper details a methodology for using structured light laser imaging to create high resolution bathymetric maps of the sea floor. The system includes a pair of stereo cameras and an inclined 532nm sheet laser mounted to a remotely operated vehicle (ROV). While a structured light system generally requires a single camera, a stereo vision set up is used here for in-situ calibration of the laser system geometry by triangulating points on the laser line. This allows for quick calibration at the survey site and does not require precise jigs or a controlled environment. A batch procedure to extract the …


Ultra-Thin-Film Aln Contour-Mode Resonators For Sensing Applications, Matteo Rinaldi, Chiara Zuniga, Gianluca Piazza Sep 2010

Ultra-Thin-Film Aln Contour-Mode Resonators For Sensing Applications, Matteo Rinaldi, Chiara Zuniga, Gianluca Piazza

Matteo Rinaldi

This paper reports on the design and experimental verification of a new class of ultra-thin-film (250 nm) aluminum nitride (AlN) microelectromechanical system (MEMS) contour mode resonators (CMRs) suitable for the fabrication of ultra-sensitive gravimetric sensors. The device thickness was opportunely scaled in order to increase the mass sensitivity, while keeping a constant frequency of operation. In this first demonstration the resonance frequency of the device was set to 178 MHz and a mass sensitivity as high as 38.96 KHz⋅μm2/fg was attained. This device demonstrates the unique capability of the CMR-S technology to decouple resonance frequency from mass sensitivity.


Control System Performance And Efficiency For A Mid-Depth Lagrangian Profiling Float, B. Mcgilvray, C. Roman May 2010

Control System Performance And Efficiency For A Mid-Depth Lagrangian Profiling Float, B. Mcgilvray, C. Roman

Christopher N. Roman

This paper presents the development of a new mid-depth Lagrangian profiling float with a primary emphasis on the control system performance and efficiency. While deep water floats have demonstrated much success in open ocean environments, many are not suited for the additional challenges associated with coastal regions. To study these regions, which are often subject to varying bathymetry within the operating range and higher variations in water density, a more advanced system is required. This new design utilizes pressure and altitude feedback to drive a high volume auto-ballasting system (ABS). The main operating modes of this float include step inputs …


Ultra-Thin Super High Frequency Two-Port Aln Contour-Mode Resonators And Filters, Matteo Rinaldi, Chiara Zuniga, Chengjie Zuo, Gianluca Piazza Jul 2009

Ultra-Thin Super High Frequency Two-Port Aln Contour-Mode Resonators And Filters, Matteo Rinaldi, Chiara Zuniga, Chengjie Zuo, Gianluca Piazza

Matteo Rinaldi

This paper reports on the demonstration of a new class of ultra-thin (250 nm thick) Super High Frequency (SHF) AlN piezoelectric two-port resonators and filters. A thickness field excitation scheme was employed to excite a higher order contour extensional mode of vibration in an AlN nano plate (250 nm thick) above 3 GHz and synthesize a 1.96 GHz narrow-bandwidth channel-select filter. The devices of this work are able to operate over a frequency range from 1.9 to 3.5 GHz and are employed to synthesize the highest frequency MEMS filter based on electrically self-coupled AlN contour-mode resonators. Very narrow bandwidth (~ …


Dna-Decorated Carbon Nanotubes As Sensitive Layer For Aln Contour-Mode Resonant-Mems Gravimetric Sensor, Chiara Zuniga, Matteo Rinaldi, Samuel M. Khamis, Timothy S. Jones, A T. Johnson, Gianluca Piazza Jun 2009

Dna-Decorated Carbon Nanotubes As Sensitive Layer For Aln Contour-Mode Resonant-Mems Gravimetric Sensor, Chiara Zuniga, Matteo Rinaldi, Samuel M. Khamis, Timothy S. Jones, A T. Johnson, Gianluca Piazza

Matteo Rinaldi

In this work a nano-enabled gravimetric chemical sensor prototype based on single-stranded DNA (ss-DNA) decorated single-walled carbon nanotubes (SWNT) as nano-functionalization layer for Aluminun Nitride (AIN) contour-mode resonant-MEMS gravimetric sensors has been demonstrated. Two resonators fabricated on the same silicon chip and operating at different resonance frequencies, 287 and 450 MHz, were functionalized with this novel bio-coating layer to experimentally prove the capability of two distinct single strands of DNA bound to SWNT to enhance differently the adsorption of volatile organic compounds such as dinitroluene (DNT, simulant for explosive vapor) and dymethyl-methylphosphonate (DMMP, a simulant for nerve agent sarin). The …


5-10 Ghz Aln Contour-Mode Nanoelectromechanical Resonators, Matteo Rinaldi, Chiara Zuniga, Gianluca Piazza Jun 2009

5-10 Ghz Aln Contour-Mode Nanoelectromechanical Resonators, Matteo Rinaldi, Chiara Zuniga, Gianluca Piazza

Matteo Rinaldi

This paper reports on the design and experimental verification of Super High Frequency (SHF) laterally vibrating NanoElctroMechanical (NEMS) resonators. For the first time, AlN piezoelectric nanoresonators with multiple frequencies of operation ranging between 5 and 10 GHz have been fabricated on the same chip and attained the highest f-Q product (4.6E12 Hz) ever reported in AlN contour-mode devices. These piezoelectric NEMS resonators are the first of their class to demonstrate on-chip sensing and actuation of nanostructures without the need of cumbersome or power consuming excitation and readout systems. Effective piezoelectric activity has been demonstrated in thin AlN films having vertical …


Aln Contour-Mode Resonators For Narrow-Band Filters Above 3 Ghz, Matteo Rinaldi, Chiara Zuniga, Chengjie Zuo, Gianluca Piazza Mar 2009

Aln Contour-Mode Resonators For Narrow-Band Filters Above 3 Ghz, Matteo Rinaldi, Chiara Zuniga, Chengjie Zuo, Gianluca Piazza

Matteo Rinaldi

This paper reports on the design and experimental verification of a new class of thin-film (250 nm) Super High Frequency (SHF) laterally-vibrating piezoelectric microelectromechanical (MEMS) resonators suitable for the fabrication of narrow-band MEMS filters operating at frequencies above 3 GHz. The device dimensions have been opportunely scaled both in the lateral and vertical dimensions in order to excite a contour-extensional mode of vibration in nano features of an ultra-thin (250 nm) Aluminum Nitride (AlN) film. In this first demonstration two-port resonators vibrating up to 4.5 GHz were fabricated on the same die and attained electromechanical coupling, kt2, in excess of …


Preliminary Model Tests For The Design Of A Gliding Deep Water Elevator, Christopher Roman, T. Gregory, E. Martin, A. Sanguinetti, J. Drummond Aug 2007

Preliminary Model Tests For The Design Of A Gliding Deep Water Elevator, Christopher Roman, T. Gregory, E. Martin, A. Sanguinetti, J. Drummond

Christopher N. Roman

This paper presents progress on the design of a "smart elevator" to be used in conjunction with deep sea ROV operations. Deep sea elevators are gravity driven untethered platforms used to deliver and or return items from the sea floor. Elevators are used when items are too large or heavy to be handled by the ROV, or when the turn around time to recover and redeploy the ROV system for sample removal is prohibitive. Unfortunately, efficiency is complicated by the precision with which elevators can be landed at a specific location on the bottom and recovered on the surface because …


Design Of A Gas Tight Water Sampler For Auv Operations, Christopher Roman, R. Camilli May 2007

Design Of A Gas Tight Water Sampler For Auv Operations, Christopher Roman, R. Camilli

Christopher N. Roman

This paper presents the design and preliminary test results for a small gas tight water sampler intended to work on scientific AUVs. In recent years AUVs have developed into reliable platforms capable of carrying a wide variety of environmental sensors for in-situ chemical measurements. Physical sample collection however remains difficult, due to the combination of space, power and complexity constraints inherent in working with autonomous platforms. The AUV sampler is a small (12 cm times 85 cm) cylindrical package designed to collect eight 20 ml gas tight volumes of water, with each sample maintained at high pressure to depths of …


Consistency Based Error Evaluation For Deep Sea Bathymetric Mapping With Robotic Vehicles, Christopher Roman, Hanumant Singh Apr 2006

Consistency Based Error Evaluation For Deep Sea Bathymetric Mapping With Robotic Vehicles, Christopher Roman, Hanumant Singh

Christopher N. Roman

This paper presents a method to evaluate the mapping error present in point cloud terrain maps created using robotic vehicles and range sensors. This work focuses on mapping environments where no a priori ground truth is available and self consistency is the only available check against false artifacts and errors. The proposed error measure is based on a disparity measurement between common sections of the environment that have been imaged multiple times. This disparity measure highlights inconsistency in the terrain map by showing regions where multiple overlapping point clouds do not fit together well. This error measure provides the map …


Improved Vehicle Based Multibeam Bathymetry Using Sub-Maps And Slam, Christopher Roman, Hanumant Singh Jul 2005

Improved Vehicle Based Multibeam Bathymetry Using Sub-Maps And Slam, Christopher Roman, Hanumant Singh

Christopher N. Roman

This paper presents an algorithm to improve sub-sea acoustic multibeam bottom mapping based on the simultaneous mapping and localization (SLAM) methodology. Multibeam bathymetry from underwater water vehicles can yield valuable large scale terrain maps of the sea door, but the overall accuracy of these maps is typically limited by the accuracy of the vehicle position estimates. The solution presented here uses small bathymetric patches created over short time scales in a sub-mapping context. These patches are registered with respect to one another and assembled in a single coordinate frame to produce a more accurate terrain estimate and provide improved renavigation …


Advances In High Resolution Imaging From Underwater Vehicles, Hanumant Singh, Christopher Roman, Oscar Pizarro, Ryan Eustice Dec 2004

Advances In High Resolution Imaging From Underwater Vehicles, Hanumant Singh, Christopher Roman, Oscar Pizarro, Ryan Eustice

Christopher N. Roman

Large area mapping at high resolution underwater continues to be constrained by the mismatch between available navigation as compared to sensor accuracy. In this paper we present advances that exploit consistency and redundancy within local sensor measurements to build high resolution optical and acoustic maps that are a consistent representation of the environment.

We present our work in the context of real world data acquired using Autonomous Underwater Vehicles (AUVs) and Remotely Operated Vehicles (ROVs) working in diverse applications including shallow water coral reef surveys with the Seabed AUV, a forensic survey of the RMS Titanic in the North Atlantic …


Optical And Acoustic Habitat Characterization With The Seabed Auv, Hanumant Singh, Ryan Eustice, Oscar Pizarro, Christopher Roman Aug 2003

Optical And Acoustic Habitat Characterization With The Seabed Auv, Hanumant Singh, Ryan Eustice, Oscar Pizarro, Christopher Roman

Christopher N. Roman

The Seabed AUV is an Autonomous Underwater Vehicle (AUV) built to serve as a readily available and operationally simple tool for high resolution imaging. It is a hover-capable vehicle that performs optical sensing with a 12 bit 1280/spl times/1024 CCD camera and acoustic high resolution mapping using an MST 300 kHz sidescan and a 675 kHz pencil beam bathymetric sonar. The AUV has been designed for operations from small vessels with minimal support equipment. It has an operational depth of 2000 meters and at 1 m/s can run for up to 10 hours. In this paper we report on the …


The Seabed Auv — A Platform For High Resolution Imaging, Hanumant Singh, Ryan Eustice, Christopher Roman, Oscar Pizarro Aug 2002

The Seabed Auv — A Platform For High Resolution Imaging, Hanumant Singh, Ryan Eustice, Christopher Roman, Oscar Pizarro

Christopher N. Roman

No abstract provided.


Estimation Of Error In Large Area Underwater Photomosaics Using Vehicle Navigation Data, C. Roman, H. Singh Oct 2001

Estimation Of Error In Large Area Underwater Photomosaics Using Vehicle Navigation Data, C. Roman, H. Singh

Christopher N. Roman

Creating geometrically accurate photomosaics of underwater sites using images collected from an AUV or ROV is a difficult task due to dimensional errors which grow as a function of 3D image distortion and the mosaicking process. Although photomosiacs are accurate locally their utility for accurately representing a large survey area is jeopardized by this error growth. Evaluating the error in a mosaic is the first step in creating globally accurate photomosaics of an unstructured environment with bounded error. Using vehicle navigation data and sensor offsets it is possible to estimate the error present in large area photomosaics independent of the …


A New Autonomous Underwater Vehicle For Imaging Research, C. Roman, O. Pizarro, R. Eustice, H. Singh Aug 2000

A New Autonomous Underwater Vehicle For Imaging Research, C. Roman, O. Pizarro, R. Eustice, H. Singh

Christopher N. Roman

Currently, unmanned underwater vehicles either tend to be cumbersome and complex to run, or operationally simple, but not quite suitable platforms for deep water imaging. This paper presents an alternative design in the form of a new low cost and easier to use autonomous underwater vehicle (AUV) for imaging research. The objective of the vehicle is to serve as a readily available and operationally simple tool that allows rapid testing of imaging algorithms in areas such as photomosaicking, 3D image reconstruction from a single camera, image based navigation, and multi-sensor fusion of bathymetry and optical data. These are all current …


Advances In Fusion Of High Resolution Underwater Optical And Acoustic Data, H. Singh, C. Roman, L. Whitcomb, D. Yoerger Apr 2000

Advances In Fusion Of High Resolution Underwater Optical And Acoustic Data, H. Singh, C. Roman, L. Whitcomb, D. Yoerger

Christopher N. Roman

We report efforts to merge data from the complementary modalities of optical and acoustic sensing for obtaining more accurate representations of the seafloor. We show that the principal obstacles to merging the acoustic and optical imaging modalities are the distortions inherent to each modality. The construction of geometrically accurate photomosaics is dominated by incremental errors arising as individual images are scaled and warped to form the photomosaic. For microbathymetric mapping, principal errors arise from sensor position and orientation calibration parameters that affect our ability to construct maps from sonar data that are commensurate with sensor and navigation resolution. We show …