Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Computational fluid dynamics

PDF

Discipline
Institution
Publication Year
Publication
Publication Type

Articles 61 - 90 of 101

Full-Text Articles in Mechanical Engineering

Meshless Direct Numerical Simulation Of Turbulent Incompressible Flows, Andres Vidal Urbina Jan 2015

Meshless Direct Numerical Simulation Of Turbulent Incompressible Flows, Andres Vidal Urbina

Electronic Theses and Dissertations

A meshless direct pressure-velocity coupling procedure is presented to perform Direct Numerical Simulations (DNS) and Large Eddy Simulations (LES) of turbulent incompressible flows in regular and irregular geometries. The proposed method is a combination of several efficient techniques found in different Computational Fluid Dynamic (CFD) procedures and it is a major improvement of the algorithm published in 2007 by this author. This new procedure has very low numerical diffusion and some preliminary calculations with 2D steady state flows show that viscous effects become negligible faster that ever predicted numerically. The fundamental idea of this proposal lays on several important inconsistencies …


Analytical And Numerical Validation Of Nozzle Spray Measurement Data Obtained From A Newly Developed Production System, Iddrisu Seidu Jan 2015

Analytical And Numerical Validation Of Nozzle Spray Measurement Data Obtained From A Newly Developed Production System, Iddrisu Seidu

ETD Archive

A newly developed production test stand for measuring the spray angle of a pressure swirl atomizer was constructed and used to measure a product line of these pressure swirl atomizers -- the macrospray atomizer. This new test stand, utilizing constant temperature hot wire anemometers, captures the spray angle data based on the voltage drop the hot wire probes see as they traverse the spray cone of the atomizer and as fluid droplets impinge upon the wire. Datasets acquired from the experiments are compared and correlated with computational fluid dynamics (CFD) simulation data. In addition, angles obtained from another type of …


Air Flow And Rain Water Penetration Analysis On Generator Enclosures Using Cfd Simulations, Sasanka Andawatta Kankanamge Jan 2015

Air Flow And Rain Water Penetration Analysis On Generator Enclosures Using Cfd Simulations, Sasanka Andawatta Kankanamge

All Graduate Theses, Dissertations, and Other Capstone Projects

Rain water penetration testing on power generator units requires a number of complicated procedures, requiring many resources. As such, a Computational Fluid Dynamics (CFD) tool, "FloEFD for Creo" is used to study the water penetration behavior on a OM924 diesel power generator enclosure in a computational environment. First, the three governing equations in fluid dynamics are derived and explained using simple methods. Next, behavior of rain water droplets upon impact is briefly discussed. Air velocity, volumetric flow rate and static pressure drop were measured physically in the OM924 generator enclosure. Then, a CFD model for the OM924 enclosure was developed …


A Computational Analysis Of The Aerodynamic And Aeromechanical Behavior Of The Purdue Multistage Compressor, David Monk Oct 2014

A Computational Analysis Of The Aerodynamic And Aeromechanical Behavior Of The Purdue Multistage Compressor, David Monk

Open Access Theses

Compressor design programs are becoming more reliant on computational tools to predict and optimize aerodynamic and aeromechanical behavior within a compressor. Recent trends in compressor development continue to push for more efficient, lighter weight, and higher performance machines. To meet these demands, designers must better understand the complex nature of the inherently unsteady flow physics inside of a compressor. As physical testing can be costly and time prohibitive, CFD and other computational tools have become the workhorse during design programs.

The objectives of this research were to investigate the aerodynamic and aeromechanical behavior of the Purdue multistage compressor, as well …


Cfd Simulation Of The Thermal Performance Of A Parallel Counter-Parallel Flow Heat Exchanger For The Treatment Of Hypothermia, Alex Heller Aug 2014

Cfd Simulation Of The Thermal Performance Of A Parallel Counter-Parallel Flow Heat Exchanger For The Treatment Of Hypothermia, Alex Heller

UNLV Theses, Dissertations, Professional Papers, and Capstones

Hypothermia is a life-threatening condition. Currently, active warming methods are the most effective treatment for dysthermic patients. The aim of this study is to investigate the use of computational fluid dynamics (CFD) in evaluating the thermal performance of a parallel/counter-parallel flow heat exchanger used as part of a fluid warmer to treat Hypothermia. The 3D model of the heat exchanger is divided into three regions; Infusate (fluid to be heated), Hot Water (heating fluid), and a Solid Region (wall). At the end of the heat exchanger, an elbow section is used to create the counter-parallel flow arrangement specific to this …


Analysis And Compression Of Large Cfd Data Sets Using Proper Orthogonal Decomposition, Trevor Jon Blanc Jul 2014

Analysis And Compression Of Large Cfd Data Sets Using Proper Orthogonal Decomposition, Trevor Jon Blanc

Theses and Dissertations

Efficient analysis and storage of data is an integral but often challenging task when working with computation fluid dynamics mainly due to the amount of data it can output. Methods centered around the proper orthogonal decomposition were used to analyze, compress, and model various simulation cases. Two different high-fidelity, time-accurate turbomachinery simulations were investigated to show various applications of the analysis techniques. The first turbomachinery example was used to illustrate the extraction of turbulent coherent structures such as traversing shocks, vortex shedding, and wake variation from deswirler and rotor blade passages. Using only the most dominant modes, flow fields were …


Computational Fluid Dynamics In Congenital Heart Disease, William M. Decampli, I. Ricardo Argueta-Morales, Eduardo Divo, Alain J. Kassab May 2014

Computational Fluid Dynamics In Congenital Heart Disease, William M. Decampli, I. Ricardo Argueta-Morales, Eduardo Divo, Alain J. Kassab

Eduardo Divo

Computational fluid dynamics has been applied to the design, refinement, and assessment of surgical procedures and medical devices. This tool calculates flow patterns and pressure changes within a virtual model of the cardiovascular system. In the field of paediatric cardiac surgery, computational fluid dynamics is being used to elucidate the optimal approach to staged reconstruction of specific defects and study the haemodynamics of the resulting anatomical configurations after reconstructive or palliative surgery. In this paper, we review the techniques and principal findings of computational fluid dynamics studies as applied to a few representative forms of congenital heart disease.


Numerical Simulation Of Flow In Ozonation Process, Jie Zhang May 2014

Numerical Simulation Of Flow In Ozonation Process, Jie Zhang

USF Tampa Graduate Theses and Dissertations

In the last two decades, Computational Fluid Dynamics (CFD) has shown great potential as a powerful and cost-efficient tool to troubleshoot existing disinfection contactors and improve future designs for the water and wastewater treatment utilities.

In the first part of this dissertation two CFD simulation methodologies or strategies for computing turbulent flow are evaluated in terms of the predicted hydraulic performance of contactors. In the LES (large eddy simulation) methodology, the more energetic, larger scales of the turbulence are explicitly computed or resolved by the grid. In the less computationally intensive RANS (Reynolds-averaged Navier-Stokes) methodology, only the mean component of …


Computational Fluid Dynamics Uncertainty Analysis For Payload Fairing Spacecraft Environmental Control Systems, Curtis Groves Jan 2014

Computational Fluid Dynamics Uncertainty Analysis For Payload Fairing Spacecraft Environmental Control Systems, Curtis Groves

Electronic Theses and Dissertations

Spacecraft thermal protection systems are at risk of being damaged due to airflow produced from Environmental Control Systems. There are inherent uncertainties and errors associated with using Computational Fluid Dynamics to predict the airflow field around a spacecraft from the Environmental Control System. This paper describes an approach to quantify the uncertainty in using Computational Fluid Dynamics to predict airflow speeds around an encapsulated spacecraft without the use of test data. Quantifying the uncertainty in analytical predictions is imperative to the success of any simulation-based product. The method could provide an alternative to traditional “validation by test only” mentality. This …


Numerical Investigation Of Boiling In A Sealed Tank In Microgravity, Sonya Lynn Hylton Jan 2014

Numerical Investigation Of Boiling In A Sealed Tank In Microgravity, Sonya Lynn Hylton

ETD Archive

NASA's missions in space depend on the storage of cryogenic fluids for fuel and for life support. During long-term storage, heat can leak into the cryogenic fluid tanks. Heat leaks can cause evaporation of the liquid, which pressurizes the tank. However, when the tanks are in a microgravity environment, with reduced natural convection, heat leaks can also create superheated regions in the liquid. This may lead to boiling, resulting in much greater pressure rises than evaporation at the interface between the liquid and vapor phases. Models for predicting the pressure rise are needed to aid in developing methods to control …


Computational Fluid Dynamics Simulation Of United Launch Alliance Delta Iv Hydrogen Plume Mitigation Strategies, Stephen Guimond Jan 2014

Computational Fluid Dynamics Simulation Of United Launch Alliance Delta Iv Hydrogen Plume Mitigation Strategies, Stephen Guimond

Electronic Theses and Dissertations

During the launch sequence of the United Launch Alliance Delta IV launch vehicle, large amounts of pure hydrogen are introduced into the launch table and ignited by Radial-Outward-Firing-Igniters (ROFIs). This ignition results in a significant flame, or plume, that rises upwards out of the launch table due to buoyancy. The presence of the plume causes increased and unwanted heat loads on the surface of the vehicle. A proposed solution is to add a series of fans and structures to the existing launch table configuration that are designed to inject ambient air in the immediate vicinity of the launch vehicle's nozzles …


Development Of Full Surface Transient Thermochromic Liquid Crystal Technique For Internal Cooling Channels, Lucky Tran Jan 2014

Development Of Full Surface Transient Thermochromic Liquid Crystal Technique For Internal Cooling Channels, Lucky Tran

Electronic Theses and Dissertations

Proper design of high performance industrial heat transfer equipment relies on accurate knowledge and prediction of the thermal boundary conditions. In order to enhance the overall gas turbine efficiency, advancements in cooling technology for gas turbines and related applications are continuously investigated to increase the turbine inlet temperature without compromising the durability of the materials used. For detailed design, local distributions are needed in addition to bulk quantities. Detailed local distributions require advanced experimental techniques whereas they are readily available using numerical tools. Numerical predictions using a computational fluid dynamics approach with popular turbulence models are benchmarked against a semi-empirical …


Experimental And Analytical Investigation Of The Transient Thermal Response Of Air Cooled Data Centers, Hamza Salih Erden Aug 2013

Experimental And Analytical Investigation Of The Transient Thermal Response Of Air Cooled Data Centers, Hamza Salih Erden

Dissertations - ALL

This work investigates the transient response of the thermal environment in air cooled data centers through experiments, analytical and computational tools. The key thermal characteristics of the various data center components were extracted from a set of experiments. This includes the development of practical experimental procedures for the thermal characterization of servers solely based on air temperature measurements and the transient response of the computer room air handlers. The knowledge of thermal characteristics paves the way for the physics-based lumped-capacitance models. A CFD-based transient simulation of the air temperature field, in which the transient thermal response of the servers was …


Towed Water Turbine Computational Fluid Dynamics Analysis, Robert G. Maughan May 2013

Towed Water Turbine Computational Fluid Dynamics Analysis, Robert G. Maughan

All Graduate Plan B and other Reports, Spring 1920 to Spring 2023

Computational fluid dynamics can be used to predict operating conditions of towed water turbines which are used in long distance sailing applications to meet electrical demands. The design consists of a turbine fastened to a shaft which is attached to a generator by a rope. The turbine is pulled in water behind a sailboat and torque is transmitted through the rope to turn the onboard generator and produce power. Torque curves from an alternator, generator, and from computational fluid dynamics were used to determine the operating spin rate and output power of the system. On-water tests were conducted to determine …


Optimization Of Mixing In A Simulated Biomass Bed Reactor With A Center Feeding Tube, Michael T. Blatnik Jan 2013

Optimization Of Mixing In A Simulated Biomass Bed Reactor With A Center Feeding Tube, Michael T. Blatnik

Masters Theses 1911 - February 2014

Producing gasoline-type fuels from lignocellulosic biomass has two advantages over producing alcohol-type fuels from plant sugars: gasoline has superior fuel characteristics and plant lignin/cellulose does not compete with human food supplies. A promising technology for converting lignocellulose to fuel is catalytic fast pyrolysis (CFP). The process involves injecting finely ground biomass into a fluidized bed reactor (FBR) at high temperatures, which reduce the biomass to gases that react inside the catalyst particles. This entails complex hydrodynamics to efficiently mix a stream of biomass into a catalyst bed that is fluidized by a separate stream of inert gas. Understanding the hydrodynamics …


Measurement Of Continuum Breakdown Using A Disc Spin-Down Experiment In Low Pressure Air, Tathagata Acharya Jan 2013

Measurement Of Continuum Breakdown Using A Disc Spin-Down Experiment In Low Pressure Air, Tathagata Acharya

LSU Doctoral Dissertations

As flow becomes rarefied, a quantity called as the tangential momentum accommodation coefficient (TMAC) becomes important because it is a measure of the momentum transport from a gas molecule to a surface. Very few experimental measurements of continuum breakdown in boundary layer flows exist. All experimental measurements of the TMAC in macro-scale boundary layer flows have been done in the continuum slip and the transition flow regimes. Moreover the experimental apparatus used by previous researchers cannot accommodate for materials that are planar by nature such as those used in the field of aerospace and microfabrication. The objectives of this research …


Bubble Coalescence And Breakup Modeling For Computing Mass Transfer Coefficient, Ryan A. Mawson May 2012

Bubble Coalescence And Breakup Modeling For Computing Mass Transfer Coefficient, Ryan A. Mawson

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

Modeling fluid behavior with computer numerical models can be very difficult due to the physical phenomenon which can be present in complex fluid systems. One difficult situation to model is when there is more than one type of fluid in a system. Some of these systems include fluids which do not mix, such as is the case when a liquid and a gas are present. In this situation, the gas phase will form bubbles which are dispersed throughout the liquid phase. Modeling the breakup and coalescence of these bubbles is critical to correctly model this type of situation.

There exist …


Computational Fluid Dynamics In Congenital Heart Disease, William M. Decampli, I. Ricardo Argueta-Morales, Eduardo Divo, Alain J. Kassab Jan 2012

Computational Fluid Dynamics In Congenital Heart Disease, William M. Decampli, I. Ricardo Argueta-Morales, Eduardo Divo, Alain J. Kassab

Mechanical Engineering - Daytona Beach

Computational fluid dynamics has been applied to the design, refinement, and assessment of surgical procedures and medical devices. This tool calculates flow patterns and pressure changes within a virtual model of the cardiovascular system. In the field of paediatric cardiac surgery, computational fluid dynamics is being used to elucidate the optimal approach to staged reconstruction of specific defects and study the haemodynamics of the resulting anatomical configurations after reconstructive or palliative surgery. In this paper, we review the techniques and principal findings of computational fluid dynamics studies as applied to a few representative forms of congenital heart disease.


Cfd And Heat Transfer Models Of Baking Bread In A Tunnel Oven, Raymond Matthew Adamic Jan 2012

Cfd And Heat Transfer Models Of Baking Bread In A Tunnel Oven, Raymond Matthew Adamic

ETD Archive

The importance of efficiency in food processing cannot be overemphasized. It is important for an organization to remain consumer- and business-oriented in an increasingly competitive global market. This means producing goods that are popular, of high quality and low cost for the consumer. This research involves studying existing methods of baking bread in a common type of industrial oven - the single level bread baking tunnel oven. Simulations of the oven operating conditions and the conditions of the food moving through the oven are performed and analyzed using COMSOL, an engineering modeling, design and simulation software. The simulation results are …


Computational Analyses For Fluid Flow And Heat Transfer In Different Curved Geometries, Carlin Miller Lucente Jan 2012

Computational Analyses For Fluid Flow And Heat Transfer In Different Curved Geometries, Carlin Miller Lucente

ETD Archive

Three-dimensional Computational Fluid Dynamics (CFD) models were developed to simulate fluid flow and heat transfer in a variety of helical channel geometries: circular and elliptical. Laminar flow was observed for Reynolds number between 200 and 1000. Code validation was done for developing steady laminar flow in a circular curved channel. The CFD results were compared to previous numerical results to verify that the model was producing valid results. The curve of the channel has a centrifugal effect on the fluid flow creating secondary flow known as Dean cells. This secondary flow moves the location of the maximum axial velocity towards …


Cfd Study On Aerodynamic Effects Of A Rear Wing/Spoiler On A Passenger Vehicle, Mustafa Cakir Jan 2012

Cfd Study On Aerodynamic Effects Of A Rear Wing/Spoiler On A Passenger Vehicle, Mustafa Cakir

Mechanical Engineering Master's Theses

Aerodynamic characteristics of a racing car are of significant interest in reducing car-racing accidents due to wind loading and in reducing the fuel consumption. At the present, modified car racing becomes more popular around the world. Sports cars are most commonly seen with spoilers, such as Ford Mustang, Subaru Impreza, and Chevrolet Corvette. Even though these vehicles typically have a more rigid chassis and a stiffer suspension to aid in high-speed maneuverability, a spoiler can still be beneficial. One of the design goals of a spoiler is to reduce drag and increase fuel efficiency. Many vehicles have a fairly steep …


Large Eddy Simulation Of Dispersed Multiphase Flow, Yejun Gong Jan 2012

Large Eddy Simulation Of Dispersed Multiphase Flow, Yejun Gong

Dissertations, Master's Theses and Master's Reports - Open

This thesis covers two main topics. The first is the comparison between the Reynoldsaveraged Navier-Stokes (RANS) simulation and the Large Eddy Simulation (LES) of high injection pressure diesel sprays under non-evaporating or evaporating conditions. The second topic is the comparison of the fuel behavior in the spray process between the hydrotreated vegetable oil (HVO) and the conventional EN 590, diesel #2 and n-heptane fuels.

To validate the RANS and LES spray simulations, comparisons were made with experimental data. The LES turbulence model, the initial drop size distribution (IDSD), the Levich jet breakup model and the CAB drop breakup model are …


Influence Of Supraglottal Geometry And Modeling Choices On The Flow-Induced Vibration Of A Computational Vocal Fold Model, Timothy E. Shurtz Nov 2011

Influence Of Supraglottal Geometry And Modeling Choices On The Flow-Induced Vibration Of A Computational Vocal Fold Model, Timothy E. Shurtz

Theses and Dissertations

Computational models of the flow-induced vibrations of the vocal folds are powerful tools that can be used in conjunction with physical experiments to better understand voice production. This thesis research has been performed to contribute to the understanding of vocal fold dynamics as well as several aspects of computational modeling of the vocal folds. In particular, the effects of supraglottal geometry have been analyzed using a computational model of the vocal folds and laryngeal airway. In addition, three important computational modeling parameters (contact line location, Poisson's ratio, and symmetry assumptions) have been systematically varied to determine their influence on model …


California Polytechnic State University Wind Resource Assessment, Jason Allan Smith Sep 2011

California Polytechnic State University Wind Resource Assessment, Jason Allan Smith

Master's Theses

Wind resource assessment at California Polytechnic State University shows there is potential for wind power generation on Cal Poly land. A computational fluid dynamics model based on wind data collected from a campus maintained meteorological tower on Escuela Ranch approximately 5 miles northwest of campus suggests there are areas of Cal Poly land with an IEC Class III wind resource at a height of 80 meters above ground. In addition during the daytime when the campus uses the most energy there are large portions of land with annual average daytime wind speeds above 6.9m/s. These areas have been identified by …


Fluid Dynamics Of Cell Printing, Ping He May 2011

Fluid Dynamics Of Cell Printing, Ping He

All Dissertations

Cell printing is an emerging technology that uses droplets to deliver cells to desired positions with resolution potentially comparable to the size of single cells. In particular, ink–jet based cell printing technique has been successfully used to build simple bio–constructs and has shown a promise in building complex bio–structures or even organs. Two important issues in ink–jet based cell printing are the moderate survival rate of delicate cells and the limited cell placement resolution. Resolving these issues is critical for the ink–jet based cell printing techniques to realize their full potential.
In this work, we use numerical simulations to reconstruct …


Multidimensional Modeling Of Condensing Two-Phase Ejector Flow, Michael F. Colarossi Jan 2011

Multidimensional Modeling Of Condensing Two-Phase Ejector Flow, Michael F. Colarossi

Masters Theses 1911 - February 2014

Condensing ejectors utilize the beneficial thermodynamics of condensation to produce an exiting static pressure that can be in excess of either entering static pressure. The phase change process is driven by both turbulent mixing and interphase heat transfer. Semi-empirical models can be used in conjunction with computational fluid dynamics (CFD) to gain some understanding of how condensing ejectors should be designed and operated.

The current work describes the construction of a multidimensional simulation capability built around an Eulerian pseudo-fluid approach. The transport equations for mass and momentum treat the two phases as a continuous mixture. The fluid is treated as …


A Computational Fluid Dynamics Feature Extraction Method Using Subjective Logic, Clifton H. Mortensen Jul 2010

A Computational Fluid Dynamics Feature Extraction Method Using Subjective Logic, Clifton H. Mortensen

Theses and Dissertations

Computational fluid dynamics simulations are advancing to correctly simulate highly complex fluid flow problems that can require weeks of computation on expensive high performance clusters. These simulations can generate terabytes of data and pose a severe challenge to a researcher analyzing the data. Presented in this document is a general method to extract computational fluid dynamics flow features concurrent with a simulation and as a post-processing step to drastically reduce researcher post-processing time. This general method uses software agents governed by subjective logic to make decisions about extracted features in converging and converged data sets. The software agents are designed …


Design Of A Three-Passage Low Reynolds Number Turbine Cascade With Periodic Flow Conditions, Daniel R. Rogers Nov 2008

Design Of A Three-Passage Low Reynolds Number Turbine Cascade With Periodic Flow Conditions, Daniel R. Rogers

Theses and Dissertations

A numerical method for modeling a low Reynolds number turbine blade, the L1M, is presented along with the pitfalls encountered. A laminar solution was confirmed to not accurately predict the flow features known in low Reynolds number turbine blade flow. Three fully turbulent models were then used to try to predict the separation and reattachment of the flow. These models were also found to be insufficient for transitioning flows. A domain was created to manually trip the laminar flow to turbulent flow using a predictive turbulence transition model. The trip in the domain introduced an instability in the flow field …


Multi-Functional, Self-Sensing And Automated Real-Time Non-Contact Liquid Dispensing System, Qiong Shen Aug 2008

Multi-Functional, Self-Sensing And Automated Real-Time Non-Contact Liquid Dispensing System, Qiong Shen

Dissertations

Liquid dispensing in the order of pico-liter has become more and more important in biology, electronics and micro-electronic-mechanical-system (MEMS) during the past two decades due to the rapid progress of researches on the deoxyribonucleic acid (DNA) microarray, compact and low-cost direct write technology (DWT), organic semiconductors and nano-particles.

The existing approaches, commercialized or experimental, to liquid dispensing in minute amounts have one common shortcoming: open loop control, i.e., they have no direct control on the quality of dispensed liquid. In contrast, the SmartPin has intrinsic self-sensing capability to not only control the process of liquid dispensing, but also the results …


Parametric Optimization Design System For A Fluid Domain Assembly, Matthew Jackson Fisher Apr 2008

Parametric Optimization Design System For A Fluid Domain Assembly, Matthew Jackson Fisher

Theses and Dissertations

Automated solid modeling, integrated with computational fluid dynamics (CFD) and optimization of a 3D jet turbine engine has never been accomplished. This is due mainly to the computational power required, and the lack of associative parametric modeling tools and techniques necessary to adjust and optimize the design. As an example, the fluid domain of a simple household fan with three blades may contain 500,000 elements per blade passage. Therefore, a complete turbine engine that includes many stages, with sets of thirty or more blades each, will have hundreds of millions of elements. The fluid domains associated with each blade creates …